이상적분
1. 개요
이상적분은 정적분의 적분 영역을 달리해나갈 때 그 극한을 취한 것이다. 단순히 적분구간이 무한히 크거나 적분구간에서 함수가 발산하는 경우를 의미하는 것이 아니다.
2. 상세
이상적분의 값은 적분 영역의 열(sequence)을 어떻게 잡느냐에 따라 달라질 수 있다. 예컨대 다음과 같은 코시 분포(Cauchy distribution)의 확률밀도함수
를 따르는 확률변수 $$X$$의 기댓값을 구하는 문제를 생각해보자. 다음과 같이 증가하는 구간열 $$[-t, t]$$를 생각해 이상적분을 취하면
$$\displaystyle \int_{-\infty}^\infty xf(x)\,\mathrm{d}x \overset{?}{=} \lim_{t\to\infty}\int_{-t}^{t}xf(x)\,\mathrm{d}x = \lim_{t\to\infty} 0 = 0$$
이므로 기댓값이 0이라 생각할 수 있다.[1] 그러나 구간열을 다음과 같이 $$[-t, e^\pi t]$$로 잡으면$$\displaystyle \int_{-\infty}^\infty xf(x)\,\mathrm{d}x \overset{?}{=} \lim_{t\to\infty}\int_{-t}^{e^{\pi}t}xf(x)\,\mathrm{d}x$$
적분 영역은 여전히 $$(-\infty, \infty)$$로 커지지만 적분의 극한은 1로 수렴함이 알려져 있다.이와 같이 적분구간의 열에 따라 적분값이 달라지는 경우를 방지하기 위해 르벡적분(Lebesgue integration)은 해당 경우에 적분값을 정의하지 않는다. 즉, 코시 분포의 평균은 (분포가 0에 대해 대칭임에도 불구하고) 정의되지 않는다.
다만 함숫값의 부호가 적분영역에서 바뀌지 않는 경우, 또는 르벡적분이 정의되는 경우에는 이상적분의 값이 적분구간의 열을 어떻게 잡든지 동일한 극한값을 가짐이 알려져 있다. 따라서 이와 같이 적분구간열에 의한 이상적분의 모호성이 해소되는 경우에 함수값을 '''계산'''하기 위해 이상적분을 보통 쓰게 되는 것이다.
따라서 적분구간이 무한히 크거나 적분구간에서 함수가 발산하는 경우를 일괄적으로 이상적분이라 하지는 않는다. 해당 경우에 '적분구간열을 잡아 적분의 극한을 취하는 과정'이라 이해하는 것이 조금 더 명확할 것이다. 이와 관련해 위키백과는 '''이상적분'''을 기술함에 있어서
$$\displaystyle\int_{-\infty}^\infty f(x)\,\mathrm{d}x \quad \mathsf{or} \,\ \displaystyle\int_{\mathbb{R}} f(x) \,\mathrm{d}x$$
등의 꼴로 적는 것을 기호의 남용(abuse of notation)이라 지적하고 있다.[2][3]3. 예시
- $$\displaystyle \int^{\infty}_1 \frac 1 {x^2}\,\mathrm{d}x = \lim_{b \rightarrow \infty} \int^{b}_1 \frac 1 {x^2}\,\mathrm{d}x $$
- $$\displaystyle \int^{-1}_{- \infty} \frac 1 x\,\mathrm{d}x = \lim_{b \rightarrow - \infty} \int^{-1}_{b} \frac 1 x\,\mathrm{d}x = -\infty$$
- $$\displaystyle \int^{1}_{0} \frac 1 x\,\mathrm{d}x = \lim_{b \rightarrow 0+} \int^{1}_{b} \frac 1 x\,\mathrm{d}x = \infty$$
- $$\displaystyle \lim_{b \rightarrow 0+} \left(\int^{1}_{b} \frac 1 x \,\mathrm{d}x+\int^{-b}_{-1} \frac 1 x\,\mathrm{d}x \right) = 0$$
다만, 위 코시 분포의 기댓값과 마찬가지로 이 결과는 함수가 홀함수이고 적분구간이 대칭이라는 특수한 상황 때문에 발생한다. 따라서 일반적인 경우에 $$\displaystyle\int^{1}_{-1} \frac 1 x\,\mathrm{d}x$$라 적으면 안 된다.[4]
- $$\displaystyle \int^{\infty}_{- \infty} \frac 1 {x^2 +1} {\rm d}x = \lim_{b\to\infty}\int_{-b}^{b}\frac{1}{x^2 + 1}{\rm d}x = \lim_{b\to\infty}[\arctan x]_{-b}^{b} = 2\lim_{b\to\infty}\arctan b = \pi$$
이상적분을 이용해 어떻게 적분값을 계산하는지 보여주는 예시다.
- $$\displaystyle \int^{1}_{0} x^x\,\mathrm{d}x = \lim_{b \rightarrow 0+} \left(\int^{1}_{b} x^x\,\mathrm{d}x \right)$$
- $$\displaystyle \int^{1}_{0} {x^{-x}}\,\mathrm{d}x = \lim_{b \rightarrow 0+} \left(\int^{1}_{b} {x ^ {-x}} \,\mathrm{d}x\right)$$[5]
[2] 오해하면 안 되는게, 이와 같은 표기가 "틀렸"으므로 "쓰면 안 된다"는 얘기가 아니다. 가리키는 바가 명확한 경우 기호의 남용은 논의의 전개와 이해에 도움이 된다. 이상적분의 값에 모호성이 없다는 것이 명확하다면 이러한 꼴로 적지 않을 이유가 없다.[3] 또한 해당 '기호의 남용'은 정적분의 극한으로서의 이상적분을 기술할 때의 얘기다. 르벡적분과 같은 경우, 적분이 잘 정의되었다면 이는 기호의 남용이 아니라 온전히 제대로 된 표기이다.[4] 정말 필요해 값을 정의하고 싶다면 코시 주요값을 이용할 수 있다. (사실 밀접한 관련 분야가 아닌 한 이걸 쓸 필요는 없을 것이다.) 그러나 그 경우에도 $$\mathcal{P}\int_{-1}^1 f(x){\rm d}x$$와 같은 표기를 이용해 '특정한' 적분구간열을 사용하고 있음을 알려야 한다. 그렇지 않아 혼란을 준 이후 '아아 그것은 코시 주요값이라고 하는 것이다'라고 하면 중2병 소리 듣기 딱 좋다. 라마누잔합의 경우도 마찬가지.[5] 마지막 2개의 이상적분은 따로 2학년의 꿈이라는 이름이 붙어 있다. 참고로 1학년의 꿈은 표수 $$p$$에 대해 $$a^p + b^p = (a+b)^p$$가 성립한다는 정리이다.