트위스티 퍼즐/크레이지
[image]
사진은 mf8의 크레이지 4×4큐브 2이다.
트위스티 퍼즐의 종류 중 하나. 면에 원이 그려져 있다. 심지어 원이 동심원을 이루며 여러 개씩 그려져 있는 경우도 있다.
원은 두 가지로 나뉜다. 한 큐브에 두 가지의 원이 모두 존재하는 경우도 있다.
물론 아래에 서술한 큐브가 전부는 아니며, 실제로는 백 종류 이상이 있다.
아래는 다얀과 mf8이 합작하여 만들어낸 크레이지 8대행성 시리즈와 그 관련 큐브들. 큐브 각각을 부를 때는 '크레이지 3×3×3 플러스: 지구" 와 같은 식으로 부른다. 각각의 시리즈는 겉보기에는 똑같이 생겼으며, 어느 원이 0이고 어느 원이 1인지만 다를 뿐이다. [2]
사실 원의 구조 자체는 별 것 없다. 예를 들어, 3×3×4 큐브를 만든 뒤 윗층과 아랫층을 잘라내 버리면 자연히 크레이지 2×3×3 큐브가 된다. 이 기법이 의미를 가지기 시작한 것은 0과 1의 개념이 추가되면서, 즉 크레이지 3×3 플러스 8대행성이 출시되면서부터이다.
반대로 원에 조각을 붙여서 늘리는 방법도 가능한데, 위의 예시를 다시 들자면 크레이지 2×3×3 큐브의 원에 조각들을 붙이면 3×3×4 큐브가 된다.
위의 원의 분류에는 쓰지 않았지만 사실 원의 안쪽이 따로 움직일 수 있게 만드는 것도 가능하다. 구조상으로는 0인 면에서 내부의 특정 조각을 없앰으로써 가능하다. 이를 이용해, 크레이지 3×3 기초판을 구한 뒤 내부의 특정 조각들을 빼고 각 원에 조각들을 붙이면 간단히 크로스 큐브가 완성된다.
베이비페이스류의 큐브와도 밀접한 연관이 있다. 베이비페이스란 조각이 얇은 판인 것을 지칭하는데, 베이비페이스류 큐브를 만드는 가장 쉬운 방법이 크레이지류 큐브의 원에 판을 붙이는 것이기 때문이다.
사진은 mf8의 크레이지 4×4큐브 2이다.
1. 개요
트위스티 퍼즐의 종류 중 하나. 면에 원이 그려져 있다. 심지어 원이 동심원을 이루며 여러 개씩 그려져 있는 경우도 있다.
2. 원의 분류
원은 두 가지로 나뉜다. 한 큐브에 두 가지의 원이 모두 존재하는 경우도 있다.
- 0: 원의 바깥쪽이 돌아갈 때 원의 안쪽은 돌아가지 않는 것. 특징적으로, 큐브의 모든 원이 0이면 떨어져 있는 것 같지만 사실은 항상 같이 돌아다니는 쌍이 존재한다.
- 1: 원의 바깥쪽이 돌아갈 때 따라서 돌아가는 것. 당연하지만 큐브에 있는 모든 원이 1이면 아무런 의미가 없다.
- 2: 원이 없는 경우.
3. 큐브 목록
물론 아래에 서술한 큐브가 전부는 아니며, 실제로는 백 종류 이상이 있다.
- 크레이지 2×3×3 큐브: 다얀에서 처음 발명. 2×3×3 큐브의 위아래에 원이 있다. 특이하게 LC[1] 라는 코너 조각이 존재한다. 이 조각이 윗면에 있다면 윗면이 1 아랫면이 0이 되며, 아랫면에 있다면 윗면이 0 아랫면이 1이 된다.
- 크레이지 4×4×4 큐브-1: 다얀과 mf8의 합작. 4×4×4 큐브의 각 면에 0인 원이 하나씩 있다. 원의 크기는 엣지조각의 닿는 정도. 이 원 안쪽에 있는 것들은 사실 자세히 보면 2×2×2 큐브처럼 행동하는 것을 알 수 있다. 결론적으로 이 큐브는 2×2×2 큐브 와 4×4×4 큐브를 합쳐놓은 것이며, 2×2×2 큐브를 맞추기 위해 안쪽 층을 짝수 번 돌릴 수밖에 없기 때문에 토끼 이빨 예외형은 나오지 않는다.
- 크레이지 4×4×4 큐브-2: 다얀과 mf8의 합작. 각 면 가운데를 중심으로 해서 크레이지 4×4×4 큐브-1보다 조금 더 큰 0인 원이 있으며, 원의 크기는 4개의 센터 조각을 완전히 포함하고 코너 조각은 포함하지 않는 크기. 역시 원의 안쪽은 바깥면을 돌려도 돌아가지 않는다. 역시 가운데에 있는 센터 조각들은 2×2×2 큐브처럼 행동하며, 토끼 이빨 예외형은 물론 나오지 않는다. 원과 엣지 조각이 겹치는 부분의 조각은 자세히 보면 2개씩 짝을 지어 돌아다닌다는 것을 알 수 있으며, 따라서 해법상으로 그 짝을 하나의 조각으로 보면 정확하다.
- 크레이지 4×4×4 큐브-3: 다얀과 mf8의 합작. 크레이지 4×4×4 큐브-2보다 조금 큰 0인 원이 있으며, 원의 크기는 코너 조각에 걸칠 정도다. 하지만 실제로 코너 조각과 원이 겹치는 부분의 작은 조각은 그 밑의 엣지 조각과 항상 같이 돌아다니는 것을 볼 수 있으며, 따라서 해법은 완전히 크레이지 4×4×4 큐브-2와 동일하다.
- 제로이드 큐브: 크레이지 3×3×3 큐브와 보이드 큐브가 합쳐진 것. 원은 따로 돌아간다.
- 슈퍼 3×3×3 큐브: 3×3×3 큐브의 윗면과 아랫면에 0인 원이 있다.
- 슈퍼 3×3×5 큐브: 3×3×3 큐브를 기본으로 하는 3×3×5 큐브의 윗면과 아랫면에 원이 있다. 두 가지 종류가 있는데, 두 원 모두 0인 것과 한 원은 0, 한 원은 1인 종류가 있다.
- 슈퍼 3×3×6 큐브: 3×3×3 큐브를 기본으로 하는 3×3×6 큐브의 윗면과 아랫면에 원이 있다. 두 가지 종류가 있는데, 두 원 모두 0인 것과 한 원은 0, 한 원은 1인 종류가 있다.
- 슈퍼 3×3×7 큐브: 3×3×3 큐브를 기본으로 하는 3×3×7 큐브의 윗면과 아랫면에 원이 있다. 두 가지 종류가 있는데, 두 원 모두 0인 것과 한 원은 0, 한 원은 1인 종류가 있다.
- 슈퍼 3×3×8 큐브: 3×3×3 큐브를 기본으로 하는 3×3×8 큐브의 윗면과 아랫면에 원이 있다. 두 가지 종류가 있는데, 두 원 모두 0인 것과 한 원은 0, 한 원은 1인 종류가 있다.
아래는 다얀과 mf8이 합작하여 만들어낸 크레이지 8대행성 시리즈와 그 관련 큐브들. 큐브 각각을 부를 때는 '크레이지 3×3×3 플러스: 지구" 와 같은 식으로 부른다. 각각의 시리즈는 겉보기에는 똑같이 생겼으며, 어느 원이 0이고 어느 원이 1인지만 다를 뿐이다. [2]
- 크레이지 3×3 플러스 8대행성: 8대행성 시리즈의 시초. 트위스티 퍼즐/크레이지/크레이지 3×3 플러스 8대행성 참고.
- 크레이지 3×3 기초판: 크레이지 3×3 플러스 큐브와 동일하지만, 모든 면이 0이다. 해법은 3×3×3 큐브와 거의 비슷하다. 현재는 전 세계에서 네이버 카페 킹엔큐브에서 운영하는 '킹엔큐브 몰'에서만 유일하게 재고가 남아 있다(...).
- 크레이지 3×3 2써클, 4써클: 2써클은 흰색과 노란색, 4써클은 초록색, 빨간색, 파란색, 주황색에만 0인 원이 있다.
- 크레이지 메가밍크스 플러스 8대행성: 메가밍크스의 각 면에 원이 그려져 있다. 물론 0과 1의 배치는 행성마다 다르지만, 어느 행성이든 0인 면 반대쪽에는 0인 면이 있고, 1인 면 반대쪽에는 1인 면이 있다.
- 크레이지 테트라헤드런 플러스 8대행성: 징스 피라밍크스의 각 면에 원이 그려져 있다. 특이하게 2인 면이 존재하는데, 2인 면은 원이 없다.
- 크레이지 펜타헤드런 8대행성: 약간 뚱뚱한 삼각기둥 모양의 큐브의 각 면에 원이 그려져 있다. 윗면과 아랫면은 120도씩 돌아가며 옆면은 180도씩 돌아간다. 역시 2인 면이 존재한다.
- 크레이지 5-레이어 펜타헤드런: 크레이지 펜타헤드런에 아래위로 한 층씩이 추가되고, 위아래에 있던 원이 사라졌다. 이론적으로 크레이지 펜타헤드런 8대행성 모두를 포함한다.
4. 기타
사실 원의 구조 자체는 별 것 없다. 예를 들어, 3×3×4 큐브를 만든 뒤 윗층과 아랫층을 잘라내 버리면 자연히 크레이지 2×3×3 큐브가 된다. 이 기법이 의미를 가지기 시작한 것은 0과 1의 개념이 추가되면서, 즉 크레이지 3×3 플러스 8대행성이 출시되면서부터이다.
반대로 원에 조각을 붙여서 늘리는 방법도 가능한데, 위의 예시를 다시 들자면 크레이지 2×3×3 큐브의 원에 조각들을 붙이면 3×3×4 큐브가 된다.
위의 원의 분류에는 쓰지 않았지만 사실 원의 안쪽이 따로 움직일 수 있게 만드는 것도 가능하다. 구조상으로는 0인 면에서 내부의 특정 조각을 없앰으로써 가능하다. 이를 이용해, 크레이지 3×3 기초판을 구한 뒤 내부의 특정 조각들을 빼고 각 원에 조각들을 붙이면 간단히 크로스 큐브가 완성된다.
베이비페이스류의 큐브와도 밀접한 연관이 있다. 베이비페이스란 조각이 얇은 판인 것을 지칭하는데, 베이비페이스류 큐브를 만드는 가장 쉬운 방법이 크레이지류 큐브의 원에 판을 붙이는 것이기 때문이다.