IB DP Mathematics : Applications and Interpretations
1. 개요
IB 의 과정 group 5의 과목 중 하나이며 2019년 8월부터 열리는 수학 코스다. Mathematics : Applications and Interpretations라고 부리기 귀찮기에 줄여서 Math AI라고 부른다. Math AI의 SL 커리큘럼은 기존의 Mathematical SL 커리큘럼과 매우 유사하다.
2. 교과과정
2.1. SL
2.1.1. Core
Math AA SL에서도 똑같은 Core이다. 대략 2년 중 1/4는 Core를 한다.
1. 선(Straight Lines)- ?시간: 직선의 방정식, 수직인 직선의 방정식, 연립 방정식등등
2. 집합과 벤 다이어그램(Sets and Venn Diagrams)- ?시간: 집합 기호, 벤 다이어 그램을 이용한 숫자 분리하기등등
3. 무리식과 지수(Surds and Exponents)- ?시간:
4. 방정식(Equations)- ?시간:
5. 수열(Sequences and Series)- ?시간:
6. 측정(Measurement) -?시간:
7. 직각삼각형에 대한 삼각법(Right Angled Triangle Trigonometry)- ? 시간:
8. 비직각삼각형에 대한 삼각법(Non-Right Angled Triangle Trigonometry)- ? 시간:
9. 공간의 점들 (Points in Space)- ?시간:
10. 확률(Probability)- ?시간:
11. 표본과 데이터 (Sampling and Data)- ?시간:
12. 통계 (Statistics) - ?시간:
2.1.2. Applications and Interpretations
13. 근삿값과 오차 (Approximations and Errors) - ? 시간:
14. 대출과 연금 (Loans and Annuities) - ? 시간:
15. 여러가지 함수 (Functions) - ? 시간:
16. 모델링 (Modelling) - ? 시간:
17. 이변수 통계학 (Bivariate Statistics) - ? 시간:
18. 이차함수 (Quadratics Functions) - ? 시간:
19. 순변분과 역변분 (Direct and Inverse Variation) - ? 시간:
20. 지수와 로그 (Exponentials and Logarithms) - ? 시간:
21. 미분법 (Differentiation) - ? 시간:
22. 곡선의 성질 (Properties of Curves) - ? 시간:
23. 도함수의 활용 (Applications of Differentiation) - ? 시간:
24. 적분법 (Integration) - ? 시간:
25. 이산확률변수 (Discrete Random Variables) - ? 시간:
26. 정규분포 (The Normal Distribution) - ? 시간:
27. 가설 검정 (Hypothesis Testing) - ? 시간:
28. 보로노이 다이어그램 (Voronoi Diagrams) - ? 시간:
2.2. HL
2.2.1. Core
Math AA HL에서도 똑같은 Core이다. 대략 2년 중 1/4는 Core를 한다.
1. 선(Straight Lines)- ?시간: 직선의 방정식, 수직인 직선의 방정식, 연립 방정식등등
2. 집합과 벤 다이어그램(Sets and Venn Diagrams)- ?시간: 집합 기호, 벤 다이어 그램을 이용한 숫자 분리하기등등
3. 무리식과 지수(Surds and Exponents)- ?시간:
4. 방정식(Equations)- ?시간:
5. 수열(Sequences and Series)- ?시간:
6. 측정(Measurement) -?시간:
7. 직각삼각형에 대한 삼각법(Right Angled Triangle Trigonometry)- ? 시간:
8. 단위원과 라디안 (The Unit Circle and Radian Measures) - ?시간:
9. 비직각삼각형에 대한 삼각법(Non-Right Angled Triangle Trigonometry)- ? 시간:
10. 공간의 점들 (Points in Space)- ?시간:
11. 확률(Probability)- ?시간:
12. 표본과 데이터 (Sampling and Data)- ?시간:
13. 통계학 (Statistics) - ?시간:
14. 이차함수 (Quadratics Functions)- ?시간:
15. 여러가지 함수 (Functions) - ?시간:
16. 함수의 변형 (Transformations of Functions) - ?시간:
17. 삼각함수 (Trigonometric Functions) - ?시간:
2.2.2. Applications and Interpretations
18. 지수 (Exponentials) - ? 시간:
19. 로그 (Logarithms) - ? 시간:
20. 근삿값과 오차 (Approximations and Error) - ? 시간:
21. 대출과 연금 (Loans and Annuities) - ? 시간:
22. 모델링 (Modelling) - ? 시간:
23. 순변분과 역변분 (Direct and Inverse Variation)
24. 이변수 통계학 (Bivariate Statistics) - ? 시간:
25. 비선형 모델링 (Non-linear Modelling) - ? 시간:
26. 벡터 (Vectors) - ? 시간:
27. 벡터의 활용 (Vectors Applications) - ? 시간:
28. 복소수 (Complex Numbers) - ? 시간:
29. 행렬 (Matrices) - ? 시간:
30. 고유값과 고유벡터 (Eigenvalues and Eigenvectors) - ? 시간:
31. 아핀 변환 (Affine Transformations) - ? 시간:
32. 그래프 이론 (Graph Theory) - ? 시간:
33. 보로노이 다이어그램 (Voronoi Diagrams) - ? 시간:
34. 미분학 입문 (Introduction to Differential Calculus) - ? 시간:
35. 미분 공식 (Rules of Differentiation) - ? 시간:
36. 곡선의 성질 (Properties of Curves) - ? 시간:
37. 도함수의 활용 (Applications of Differentiation) - ? 시간:
38. 적분학 입문 (Introduction to Integration) - ? 시간:
39. 적분의 기법 (Techniques of Integration) - ? 시간:
40. 정적분 (Definite Integrals) - ? 시간:
41. 운동학 (Kinematics) - ? 시간:
42. 미분방정식 (Differential Equations) - ? 시간:
43. 연립미분방정식 (Coupled Differential Equations) - ? 시간:
44. 이산확률변수 (Discrete Random Variables) - ? 시간:
45. 정규분포(The Normal Distribution) - ? 시간:
46. 추정과 신뢰구간 (Estimations and Confidence Intervals)
47. 가설 검정 (Hypothesis Testing) - ? 시간:
48. 카이 제곱 검정 (x^2 Hypothesis Tests) - ? 시간:
3. Assessments
4. External Assessment
시험 둘다 공통적으로 3개의 시험을 치르게된다.
4.1. Paper 1
계산기 사용이 가능하다.
이 시험은 짧은 답변 문제(short-response questions)만 포함 된다.
HL은 총 120분과 총 110 marks를 받을 수 있고 SL은 총 90분과 총 80 marks를 받을 수 있다.
4.2. Paper 2
계산기 사용이 가능하다.
이 시험은 긴 답변 문제(extended-response questions)만 포함 된다.
HL은 총 120분과 총 110 marks를 받을 수 있고 SL은 총 90분과 총 80 marks를 받을 수 있다.
4.3. Paper 3
HL만 치고 계산기 사용이 가능하다.
2가지의 어려운 문제들이 제시되고 총 60분과 총 55 marks를 받을 수 있다.