보어의 원자모형

 


1. 개요
2. 양자화
2.1. 한계점


1. 개요


19세기의 과학자들은 수소의 선 스펙트럼의 불연속적임을 설명하지 못했다. 닐스 보어는 수소의 선스펙트럼을 효과적으로 설명하기 위해, 원자모형을 다시 제창했다. 닐스 보어는 전자의 궤도나 에너지가 연속적이지 않고, 정수로 떨어지는 불연속적임을 가정하여 수소의 선 스펙트럼을 설명했다.
닐스 보어는 여기서 몇 가지의 이론을 정리했다.

2. 양자화


'''양자화의 정의는 어떤 물리적인 양이 연속적으로 변하지 않고, 불연속적인 값들만 가지는 것을 의미한다.'''
예시를 들자면, 책 1.5436권, 우산 0.314개가 아닌 책 2권, 우산 1개처럼 일정한 정수비로 떨어진다고 가정했다. 그리고 원자 속의 전자가 불연속적인 에너지를 갖는 특정한 궤도에 있을 때, 에너지를 방출하지 않고 안정한 상태로 존재한다는 것을 알아냈다. 또한, 전자가 안정한 궤도 사이를 이동할 때만 두 궤도의 에너지 차이에 해당하는 에너지를 빛의 형태로 방출하거나, 흡수한다.
즉, 전자가 전자껍질 안쪽으로 이동하면 에너지를 빛의 형태로 방출하고, 전자가 전자껍질 바깥쪽으로 이동하면 에너지를 빛의 형태로 흡수한다는 의미다.
또한 에너지의 양자화를 알아야 한다. 에너지의 양자화라는 것은 양자 조건(원자 속의 전자가 불연속적인 에너지를 갖는 특정한 궤도에 있을 때, 에너지를 방출하지 않고 안정한 상태로 존재하는 것)을 만족하는 양자수 n에 따라, 원자 내의 전자가 특정한 에너지를 갖는 것을 에너지의 양자화라고 정의한다.
흔히 화학이나, 물리에서 말하는 바닥 상태라는 것은 원자가 가장 낮은 에너지를 가진 상태이고, 들뜬 상태라는 것은 원자가 바닥 상태보다 큰 에너지를 가진 상태를 의미한다. 또한 아까전에 말했다시피, 전자는 에너지를 흡수하거나 방출해서 에너지 준위를 이동한다.
여기서 흡수하거나 방출하는 에너지는 전자기파. 즉, 빛을 의미한다. 그리고, 전이하는 두 에너지의 준위 차는 서로 같다.
에너지를 흡수 할 때는 낮은 에너지 준위에 있는 전자가 높은 에너지 준위가 있는 쪽으로 전이하고, 에너지를 방출 할 때는 높은 에너지 준위에 있는 전자가 낮은 에너지 준위가 있는 쪽으로 전이한다.
진동수가 f, 광자의 에너지가 E라고 가정한다면 다음과 같다. $$E=hf=hc/\lambda$$ ($$h=$$ 플랑크 상수, $$c=$$ 진공에서의 광속)

2.1. 한계점


하지만 닐스 보어의 원자 모형은 아주 크나큰 한계점을 지니고 있었다.
'''바로, 수소 이외의 원자들의 선 스펙트럼을 설명 할 수 없었다.''' 이 덕분에 보어의 원자모형에 오비탈이라는 가설이 더해졌다.

분류