케플러-푸앵소 다면체

 



1. 개요
2. 성질
2.1. 케플러-푸앵소 다면체
2.2. 볼록 정다면체와의 관계
3. 관련 문서


1. 개요


-多面體 / Kepler–Poinsot polyhedron / solid
기하학에 등장하는 3차원 도형의 일종.
정다면체를 이루는 면의 개념을 오목 정다각형(또는 정다각별)[1]으로 확장시켜 얻어지는 다면체(1619년, 요하네스 케플러의 정의)와 면이 만나는 횟수를 분수번[2]으로 확장시켜 만들어지는 다면체(1809년 루이스 푸앵소가 발견). 모든 면이 합동이며, 모든 꼭지점에서 면이 만나는 개수가 같다는 점에서 정다면체의 성질을 가지고 있지만 다면체가 볼록하지 않고 오목하다는 점에서 다르다. 이 때문에 볼록한 정다면체와 구별하여 "오목정다면체"라고 부르기도 한다.
극한의 정의를 재정의하고 19세기 수학의 선봉에 섰던 수학자 오귀스탱 루이 코시가 케플러-푸앵소 도형이 당시 시점에 발견된 4개가 전부라는 사실을 증명해 자신의 수학자 커리어를 시작했다.

2. 성질


  1. 모든 면이 합동이다.
  2. 모든 꼭지점에서 만나는 면의 개수가 같다.
  3. 면의 형태가 5/2각형이거나 각각의 면이 한 꼭지점에서 5/2번 만난다.[3]

2.1. 케플러-푸앵소 다면체


네 개의 케플러-푸앵소 다면체가 존재한다.

[image]
왼쪽부터 작은 별모양 십이면체, 큰 별모양 십이면체, 큰 이십면체, 큰 십이면체. 면의 형태를 보이기 위해 한 개의 면이 색칠되어있다.
  • 작은 별모양 십이면체: 12개의 5/2각형(오각별)으로 이루어져 있다. 한 꼭지점에서 만나는 면의 개수는 5개. {5/2, 5}[4]
  • 큰 별모양 십이면체: 12개의 5/2각형(오각별)으로 이루어져 있다. 한 꼭지점에서 만나는 면의 개수는 3개. {5/2, 3}
  • 큰 이십면체: 20개의 정삼각형으로 이루어져 있으나, 분수번 만난다는 점에서 이십면체와는 다르다. 한 꼭지점에서 만나는 면의 개수는 5/2개. {3, 5/2}
  • 큰 십이면체: 12개의 정오각형으로 이루어져 있으나, 한 꼭지점에서 오각형이 분수번 만난다는 점에서 십이면체와는 다르다. 한 꼭지점에서 만나는 면의 개수는 5/2개. {5, 5/2}

2.2. 볼록 정다면체와의 관계


튀어나온 꼭지점들 중 가장 가까운 꼭지점끼리 이어 보면 정다면체가 만들어진다. 작은 별모양 십이면체, 큰 이십면체, 큰 십이면체의 경우 정이십면체가 만들어지고, 큰 별모양 십이면체의 경우 정십이면체가 만들어진다.
그 밖에도 케플러-푸앵소 다면체의 면이 겹쳐져 생기는 내부의 도형을 자세히 관찰하면 정십이면체나 정이십면체를 볼 수 있다.

3. 관련 문서



[1] 정오각별은 5/2각형이라고 불린다.[2] 5/2번 만난다. 쉽게 말해 한 꼭지점에서 만나는 각각의 다각형이 별모양을 이루며 만나도록 한다는 의미이다. 5/2각형의 형태가 정오각별이라는 점을 참고하자.[3] 위 1, 2번 설명을 참고하자. 잘 이해가 되지 않는다면 이 링크를 참고하자.[4] {a, b}는 a각형이 b번 만나는 형태의 다면체를 의미한다.

분류