리소그래피
Lithography
반도체 제작 공정 중 실리콘 웨이퍼에 회로 패턴을 형성하는 공정. 필름 사진을 현상하듯 레이저를 쏴서 마스크를 통과시켜 웨이퍼에 찍어낸다. 매우 정밀한 수준의 장비가 요구되기 때문에 리소그래피 장비를 자체 제작할 수 있는 기업은 그리 많지 않다.
Nano Imprint Lithography (NIL)
나노 크기의 패턴을 가지는 요철 형태의 기판을 폴리머 resin에 전사하는 방법이다. 고가의 장비가 불필요하여, 이전의 공정보다 작은 스케일의 패턴이 가능하다.
경화 방식에 따라 2가지로 나뉜다. 열을 가하는 Thermal-NIL과 UV 광원을 이용하는 UV-NIL.
작업 방식은 다음과 같다.
스탬프와 고분자가 코팅되어 있는 기판을 접촉시켜 고분자의 유동성이 높은 유리 전이온도[2] 이상에서 적절한 압력을 주어 고분자 폴리머들이 스탬프의 패턴 사이로 채워져 resin에 패턴 전사가 이루어지게 된다. 연속적으로 유리 전이온도 이하로 냉각한 뒤 스탬프를 고분자 패턴에서 제거하여 하부에 존재하는 resin 잔류 층을 시각 또는 물리적, 화학적 방법으로 제거하여 열 임프린트 공정을 이용하여 나노 패턴을 형성하게 된다.
보통 임프린트 온도는 폴리머의 유리전이 온도보다 높은 90℃ 이상에서 수행한다. 이 온도에서 고분자 물질이 유동성을 가져 스탬프 패턴 사이로 채워질 수 있다. PMMA의 경우 약 200℃에서 임프린트를 수행할 수 있지만 높은 온도로 인해 스탬프와 기판의 열팽창 및 불일치 그리고 가열 후 냉각의 문제점이 있다. 보다 균일한 패턴을 형성하기 위해서는 임프린트 resin의 낮은 점도가 요구되며, 이는 낮은 압력에서 쉽게, 균일하게 퍼지고, 임프린트 후 패턴 내 잔류 층의 두께를 최소화하여 잔류 층을 없애는 건식 에칭 공정을 간소화 할 수도 있다. 또한, 낮은 점도의 resin 제조는 임프린트 공정의 중요한 기술이며, 높은 해상도의 나노 패턴 형성과 함께 잔류 층의 제거를 보다 쉽게 할 수 있음을 나타낸다.
공정은 spin coating → soft baking → heating → molding → relaxation time → cooling → demolding 순서로 진행된다.
1996년 Haisma 등이 처음으로 제안한 방법.
기판 위에 자외선 경화용 resin을 도포한 뒤 자외선 광원이 투명한 몰드를 통해서 resin을 감광시키면 경화가 일어나면서 단단해지게 된다. 이 공정은 상온에서 낮은 압력으로 임프린팅이 가능하지만, 투명한 몰드의 제작에 어려움이 있다. 전자 빔(Electron beam)을 통한 나노 패터닝 제작시 석영기판이 비전도성이기 때문에 나타는 전자의 축적효과(Charging effect)로 인해 전자빔의 왜곡을 일으키게 된다. 이 같은 특성은 석영을 식각하는 건식식각에서 해결되어야 하는 문제점으로 전자빔의 왜곡을 방지하기 위해 석영 위에 크롬을 얇게 증착하고 전자빔을 이용한 패터닝을 수행하는 연구가 발표되었다. 이때, 크롬 막은 도체이므로 전자가 축적되는 것을 해결해주며, 식각시 마스크로 이용할 수 있다. 또한 전도성을 가지는 산화막(Indium Tin Oxide)을 석영이나 유리 위에 증착해서 산화 막에 패터닝하여 전자 축적 효과의 문제를 해결하는 방법이 발표되었다.
전자빔 리소그래피는 고가의 광학장비가 필요하지만, 나노 스케일의 공정 또한 쉽지 않은 점, 나노 스케일의 공정이 어렵다는 단점을 가지고 있다.
차세대 리소그래피 기술로는 EUV(극자외선) 리소그래피가 쓰이기 시작하고 있다. 파장이 짧은 레이저를 사용할수록 정밀한 패턴을 형성할 수 있지만 파장을 줄이는 것이 쉽지 않기 때문에 기술 개발에 오랜 시간이 걸렸다. 삼성전자가 ASML을 통해 이 장비를 도입하고 있다.
자외선이라고는 하지만 거의 X선에 가까운 13nm근처의 파장 대역을 가지고 있다. 광선이 공기를 포함한 대부분의 물질에 흡수돼버리기 때문에 광선이 지나는 경로 전체를 진공으로 유지해야 하고 집광을 위해 렌즈가 아닌 거울을 사용해야 하는 등(렌즈를 통과하는 과정에서 광선이 렌즈를 이루는 분자들에 흡수돼버린다) 까다로운 점이 많다. 삼성전자는 EUV 리소그래피를 7nm 공정에 투입하며 향후 3nm공정까지는 EUV장비를 사용할 계획이라고 한다. 삼성의 라이벌인 TSMC도 한발 늦긴 했지만 곧 EUV 양산 체제에 돌입한다고 한다.
Quantum lithography, 즉 양자 리소그래피는 양자 얽힘과 같은 빛의 비고전적인 특성을 이용하여 기존의 리소그래피 기술보다 향상된 효과를 얻을 수 있는 새로운 리소그래피 기술이다.
석판화라고도 한다.
1. 반도체 용어
반도체 제작 공정 중 실리콘 웨이퍼에 회로 패턴을 형성하는 공정. 필름 사진을 현상하듯 레이저를 쏴서 마스크를 통과시켜 웨이퍼에 찍어낸다. 매우 정밀한 수준의 장비가 요구되기 때문에 리소그래피 장비를 자체 제작할 수 있는 기업은 그리 많지 않다.
1.1. 나노 임프린트 리소그래피
Nano Imprint Lithography (NIL)
나노 크기의 패턴을 가지는 요철 형태의 기판을 폴리머 resin에 전사하는 방법이다. 고가의 장비가 불필요하여, 이전의 공정보다 작은 스케일의 패턴이 가능하다.
경화 방식에 따라 2가지로 나뉜다. 열을 가하는 Thermal-NIL과 UV 광원을 이용하는 UV-NIL.
작업 방식은 다음과 같다.
- resin이 도포된 기판 표면 박막에 압력을 가하여 나노 구조의 스탬프를 임프린트한다. 이 과정에서 스탬프의 패턴은 resin에 복제된다. 임프린트 스탬프를 제작하기 위해서는 Positive resist[1] 를 이용한 주기적인 패턴 제작, 주기적인 metal 나노 구조물 제작, 나노 패턴 형성을 위한 식각 기술이 필요하다.
- 방향성 식각을 통하여 패턴을 전사한다.
나노 임프린트 resin 패턴의 잔여 층이 존재할 경우, 향후 식각 공정에서 pattern을 형성하고 유지하는데 영향을 미치고, pattern 전체가 뭉개지는 현상이 발생한다. 따라서 이온 식각(Reactive Ion Etch) 장비를 이용하여 잔류하던 잔여 층을 제거해야 한다.
금속 박막 층의 노출로 산화물 stamp, 제작이 이루어져야 하기 때문에 식각 가스로 금속과 산화 반응을 하는 산소 가스를 사용한다. 잔여 층이 약 20 mm 정도로 얇게 형성되기 때문에 40W의 낮은 플라즈마 power로 진행하여야 한다.
금속 박막 층의 노출로 산화물 stamp, 제작이 이루어져야 하기 때문에 식각 가스로 금속과 산화 반응을 하는 산소 가스를 사용한다. 잔여 층이 약 20 mm 정도로 얇게 형성되기 때문에 40W의 낮은 플라즈마 power로 진행하여야 한다.
1.1.1. 열 NIL
스탬프와 고분자가 코팅되어 있는 기판을 접촉시켜 고분자의 유동성이 높은 유리 전이온도[2] 이상에서 적절한 압력을 주어 고분자 폴리머들이 스탬프의 패턴 사이로 채워져 resin에 패턴 전사가 이루어지게 된다. 연속적으로 유리 전이온도 이하로 냉각한 뒤 스탬프를 고분자 패턴에서 제거하여 하부에 존재하는 resin 잔류 층을 시각 또는 물리적, 화학적 방법으로 제거하여 열 임프린트 공정을 이용하여 나노 패턴을 형성하게 된다.
보통 임프린트 온도는 폴리머의 유리전이 온도보다 높은 90℃ 이상에서 수행한다. 이 온도에서 고분자 물질이 유동성을 가져 스탬프 패턴 사이로 채워질 수 있다. PMMA의 경우 약 200℃에서 임프린트를 수행할 수 있지만 높은 온도로 인해 스탬프와 기판의 열팽창 및 불일치 그리고 가열 후 냉각의 문제점이 있다. 보다 균일한 패턴을 형성하기 위해서는 임프린트 resin의 낮은 점도가 요구되며, 이는 낮은 압력에서 쉽게, 균일하게 퍼지고, 임프린트 후 패턴 내 잔류 층의 두께를 최소화하여 잔류 층을 없애는 건식 에칭 공정을 간소화 할 수도 있다. 또한, 낮은 점도의 resin 제조는 임프린트 공정의 중요한 기술이며, 높은 해상도의 나노 패턴 형성과 함께 잔류 층의 제거를 보다 쉽게 할 수 있음을 나타낸다.
공정은 spin coating → soft baking → heating → molding → relaxation time → cooling → demolding 순서로 진행된다.
1.1.2. UV-NIL
1996년 Haisma 등이 처음으로 제안한 방법.
기판 위에 자외선 경화용 resin을 도포한 뒤 자외선 광원이 투명한 몰드를 통해서 resin을 감광시키면 경화가 일어나면서 단단해지게 된다. 이 공정은 상온에서 낮은 압력으로 임프린팅이 가능하지만, 투명한 몰드의 제작에 어려움이 있다. 전자 빔(Electron beam)을 통한 나노 패터닝 제작시 석영기판이 비전도성이기 때문에 나타는 전자의 축적효과(Charging effect)로 인해 전자빔의 왜곡을 일으키게 된다. 이 같은 특성은 석영을 식각하는 건식식각에서 해결되어야 하는 문제점으로 전자빔의 왜곡을 방지하기 위해 석영 위에 크롬을 얇게 증착하고 전자빔을 이용한 패터닝을 수행하는 연구가 발표되었다. 이때, 크롬 막은 도체이므로 전자가 축적되는 것을 해결해주며, 식각시 마스크로 이용할 수 있다. 또한 전도성을 가지는 산화막(Indium Tin Oxide)을 석영이나 유리 위에 증착해서 산화 막에 패터닝하여 전자 축적 효과의 문제를 해결하는 방법이 발표되었다.
1.2. 전자빔
전자빔 리소그래피는 고가의 광학장비가 필요하지만, 나노 스케일의 공정 또한 쉽지 않은 점, 나노 스케일의 공정이 어렵다는 단점을 가지고 있다.
1.3. EUV lithography
차세대 리소그래피 기술로는 EUV(극자외선) 리소그래피가 쓰이기 시작하고 있다. 파장이 짧은 레이저를 사용할수록 정밀한 패턴을 형성할 수 있지만 파장을 줄이는 것이 쉽지 않기 때문에 기술 개발에 오랜 시간이 걸렸다. 삼성전자가 ASML을 통해 이 장비를 도입하고 있다.
자외선이라고는 하지만 거의 X선에 가까운 13nm근처의 파장 대역을 가지고 있다. 광선이 공기를 포함한 대부분의 물질에 흡수돼버리기 때문에 광선이 지나는 경로 전체를 진공으로 유지해야 하고 집광을 위해 렌즈가 아닌 거울을 사용해야 하는 등(렌즈를 통과하는 과정에서 광선이 렌즈를 이루는 분자들에 흡수돼버린다) 까다로운 점이 많다. 삼성전자는 EUV 리소그래피를 7nm 공정에 투입하며 향후 3nm공정까지는 EUV장비를 사용할 계획이라고 한다. 삼성의 라이벌인 TSMC도 한발 늦긴 했지만 곧 EUV 양산 체제에 돌입한다고 한다.
1.4. Quantum lithography
Quantum lithography, 즉 양자 리소그래피는 양자 얽힘과 같은 빛의 비고전적인 특성을 이용하여 기존의 리소그래피 기술보다 향상된 효과를 얻을 수 있는 새로운 리소그래피 기술이다.
2. 판화의 종류
석판화라고도 한다.