레이저

 


1. 개요
2. 원리
2.1. 구성요소
3. 구분
3.1. 고체 레이저
3.2. 가스 레이저
3.3. 반도체 레이저
3.4. 색소 레이저
3.6. 광섬유 레이저
3.7. 화학 레이저
4. 레이저의 응용
4.1. 산업용 레이저
4.2. 의료용 레이저
4.3.1. 관련 문서
5. 안전 기준
7. 관련 문서
7.1. 창작물에서 등장하는 레이저 도구/병기

[clearfix]

1. 개요


'''레이저'''(LASER)는 '''복사 유도 방출을 통한 광증폭'''(Light Amplification by Stimulated Emission of Radiation)의 줄임말로, 본래 빛의 증폭이라는 물리적 현상을 이르는 말이다. 일상적으로는 이를 이용해 만들어진, 강하고 퍼지지 않으며 멀리 전달되는 단색광 '''레이저 빔'''(beam) 또는 '''레이저광'''(光)을 간단히 '레이저'라고 부른다. 레이저 빔은 단색성, 직진성, 가간섭성, 고출력, 편광성이 특징이다. 본래 줄임말이나 시간이 흐르면서 일반명사화 되어 영어권에서도 두문자 'LASER'라고 표기하지 않고 'Laser'라고 단어처럼 사용하는 경우가 더 많다.

2. 원리


원자들은 안정된 상태에 있다가 에너지를 받으면 전자들이 들뜨게 되어 에너지가 높아진다. 이 상태는 에너지가 높아 굉장히 불안정하기 때문에 이내 빛을 내면서 안정된다. 이를 자연 방출이라고 한다. 이 과정을 통해서 나온 빛은 위상과 파장이 각기 달라 잘 퍼지게 되고 멀리 가지 못한다. 이는 우리가 흔히 보는 빛이라고 생각하면 된다. 하지만 들떠 있는 순간의 원자가 자신이 자연 방출하는 빛과 동일한 파장의 빛과 충돌하면 파장과 위상, 진행 방향이[1] 동일한 빛을 방출하는 성질이 있다. 이를 유도 방출이라고 하는데, 레이저는 이 원리를 이용한다.
참고로 방출되는 파장의 길이에 따라 유도방출이 얼마나 잘 일어날지를 계산해 볼 수 있다. 이는 양자역학이나 광학을 배우면 알 수 있으며, 자세한 내용은 페르미의 황금법칙(Fermi's Golden Rule)을 참고해보자.
매질을 사용하는 일반적인 레이저의 경우, 내부에 좌우로 거울이 설치하여 광공진기를 구성하여 그 사이에 레이저 발진에 쓰이는 물질을 넣어 놓는다. 이때 한쪽은 전반사 거울을, 다른 한쪽은 일부분 투과시키는 반투명 거울을 사용한다.[2] 그리고 사이의 물질을 자극하면[3] 빛이 거울 사이를 몇 백 번을 왕복하면서 거울로 수직 반사되는 빛만이 남아 유도 방출로 인해 서서히 빛이 가지런히 정렬된다. 그리고는 이런 과정을 거쳐 일정한 에너지 이상이 되면서 레이저광으로 방출된다.
또한 물질마다 들뜬 상태에서 바닥 상태로 전환 될때 방출하는 에너지의 크기가 다른데 이 때문에 물질마다 파장이 다르며 레이저의 매질로 사용되는 물질에 따라 레이저가 가지는 색깔과 에너지가 결정된다.[4] 네온에서는 빨간색, 헬륨에서는 노란색, 아르곤에서는 파란색, 이산화탄소일 경우 방출되는 빛의 파장이 가시광선의 범위를 벗어나 적외선임으로 무색이다.

2.1. 구성요소


  • 이득매질: 레이저의 기본이 되는 물질
  • 공진기: 주로 한쌍의 거울을 사용
  • 펌핑장치: 이득매질을 바닥상태에서 들뜬상태로 만들어주는 장치

3. 구분


레이저란 통상 이득매질의 형태에 따라 구분이 된다. 펌핑방법은 항목별로 설명.

3.1. 고체 레이저


가장 먼저 개발된 레이저는 루비[5][6] 레이저 이며, 이는 3준위의 에너지 준위를 갖는 레이저로, 발진 파장은 694nm의 가시 영역에 속한다. 3준위 레이저의 특징답게 에너지를 많이 잃어버려 효율이 떨어지지만, 발진 파장대가 색소에 다소 예민하게 반응하기 때문에 문신 같은 걸 제거하는 용도로는 여전히 응용되고있다.
대표적인 고체 레이저로는 의료용 및 산업용으로 널리 쓰이는 Nd:YAG 레이저[7][8]를 들 수 있다. 기본 발진 파장은 1064nm 이며 4준위 레이저로 고출력이 가능하다. Nd:YAG 레이저는 이산화탄소 레이저와 함께 가장 많이 사용되는 산업용 레이저다.
대부분의 고체 레이저는 빛을 사용하는 광펌핑을 이용한다. 레이저 다이오드가 개발되기 전에는 대부분 플래시램프를 사용한 광펌핑을 하였으나, 최근에는 레이저 다이오드 개발에 따라 레이저 다이오드로 광펌핑한 고체 레이저(Diode Pumped Solid State Laser, DPSS)가 많이 개발되고 있다.

3.2. 가스 레이저


[image]
헬륨-네온 레이저 구성도
이득매질이 기체로 이루어진 레이저. 헬륨-네온(He-Ne) 레이저, 이산화탄소(CO2) 레이저 등이다. 기체 레이저는 가스의 특성으로 인해 대부분 유리관 등의 용기를 사용하여 이득매질이 되는 가스를 가두어 쓰며, 펌핑 작용으로는 기체방전을 주로 이용한다.
헬륨-네온 레이저의 경우 실제 빛을 내는 원소는 네온이며, 헬륨은 단지 네온을 효율적으로 들뜬 상태에 이르도록 하기 위하여 사용된다. 헬륨과 네온의 혼합비는 5:1 ~ 10:1 사이값을 가지며, 튜브에 수 torr[9]의 압력으로 혼합가스를 채워 밀봉한 유리관을 많이 쓴다. 대표적인 발진 파장은 3.39μm, 1.15μm, 0.633μm가 있다.
이산화탄소(CO2) 레이저는 대표적인 4준위 가스 레이저이고, 따라서 고출력을 가진다. 효율적인 펌핑을 위하여 이산화탄소 가스 이외에 질소가스를 혼합한 방전을 많이 사용하며, 기본 발진파장은 10.6μm 이다. 개발 초기에는 수W의 출력을 가졌으며, 최근에는 수백W 이상의 출력을 가진 레이저가 개발되어 산업현장에 응용되고 있다. 산업에서 금속이나 세라믹을 절삭하는 이산화탄소 레이저는 평균 출력이 보통 1kW 이상이며(보통 연속발진 모드로 많이 사용된다.) 세계적으로는 레이저 미사일 요격 시스템 연구용으로 100kW를 초과하는 출력도 목표로 연구가 되고있다. 당연히 가격과 크기는 출력에 비례해서 올라간다.
장점
  • 이득매질이 가스이므로 이를 넣는 용기의 조절만으로 이득매질의 크기를 쉽게 크게 할 수 있다.
  • 매질이 손상을 받지 않는다.
  • 물질이 상대적으로 싸다(보통 Nd:YAG 단결정의 경우 크기에 따라 보통 수십만원에서 수백만원을 호가하지만 이산화탄소 레이저는 그냥 메질 자체가 저렴한 가스이며 가스를 흘려주는 유리 용기만 있으면 된다).
  • 기체의 특성상 신속한 열교환이 이루어진다. 특히 일부 장비의 경우 유리관에 냉각수를 흘려보낼수 있는 구조로 만들어서 수냉이 가능하게 만들어놓은 경우도 있다.
  • 공진기 방향으로 정렬된 가스관을 밀봉 할 때 브루스터 각도를 이루는 창으로 밀봉함으로써 발진되는 빛의 한 쪽 진동성분이 브루스터각에 의하여 제거되므로 선편광된 레이저를 쉽게 얻을 수 있다.
단점
  • 기체를 담기 위한 용기(주로 유리재질)를 사용하므로 고체레이저 등에 비하면 내구성이 떨어진다.
  • 가스의 누설 등으로 수명이 짧다.

3.3. 반도체 레이저


이름에서 볼 수 있듯이 이득매질로 반도체를 사용하는 레이저. 일반적인 레이저 다이오드의 p형과 n형의 반도체를 접합한 상태에서 전류를 흘려주는 펌핑 작용을 통해 전자와 정공이 만나 안정된 상태로 돌아가면서 발생하는 빛을 사용하는 과정을 거친다.
최근엔 양자 폭포 레이저(Quantum Cascade Laser)가 활발히 연구 되고 있는데 주로 장파장의 발진 파장을 위해 연구 되고 또 상용화되고 있다. 일반적인 레이저 다이오드의 경우는 발진파장이 active region의 밴드갭에 비례하는데 반해, 일반적인 양자 폭포 레이저의 경우는 intraband cascade 의 원리를 이용하여 아주 세심한 증착방법과 (Molarcular beam epitaxy 혹은 MOCVD) 디자인을 통해 (주로 8 band k dot p가 사용된다.) 아주 얇은 증착층을 수십에서 수백층이상 쌓아 컨덕션 밴드 내의 높은에너지 레벨에서 낮은 에너지레벨을 차이를 engineering하여 전자만의 이용해 발진 파장을 조절한다.발진파장은 주로 4µm ~ 수십µm까지 입증되었다. 하지만 hole과 electron을 모두 이용하는 interband cascade laser또한 활발히 연구되고 있고 주로 2µm~4µm까지의 발진파장에 사용된다.
장점
  • 높은 펌핑 효율
  • 작은 크기
단점
  • 큰 발산각[10]
Si, GaAs 등 다양한 반도체 물질을 사용하며, 미량의 불순물을 첨가하여 레이저의 발진 파장을 조절 할 수 있다.
Si은 직접천이형이 아니고 또 그위에 직접 천이형 물질증착이 매우! 어렵기 때문에 Monolithic integration이 목적이 아닌 이상 잘 쓰이지 않는다. 주로 희토류의 경우엔 미량의 불순물이지만 이방법은 반도체 레이저에서 잘 사용되지 않고 레이저 다이오드의 경우 발진파장은 주로 active region의 alloy형성으로 조절이 된다. 주로 GaAs의 기판의 경우 일반적인 Quantum well이나 Quantum dot active region으로 커버할수 있는 발진파장이 (700nm ~ 1.3µm)인데 반해 InP의 기판의 경우 (930nm ~2µm)까지 InGaAsP 혹은 AlGaInAs를 통해 조절이 가능하다.

3.4. 색소 레이저


옷을 염색할 때 사용하는 염료를 에탄올 등에 혼합한 액체를 이득매질로 쓰며, 광학적인 펌핑을 주로 사용한다. 염료의 농도를 조절하면 발진하는 레이저 빛의 파장을 가변할 수 있는 장점이 있어서 분광학에 널리 쓰고 있다. 대표적인 레이저 발진용 염료로는 로다민 6G 가 있다. 그러나 이득매질로 사용되는 액체의 특성상 물리적 화학적인 외부요인에 의한 매질의 손상이 쉽고, 이로 인해 빔의 정밀제어가 어려운데다가, 유지 보수에 많은 애로 사항이 발생하여 실용적인 문제점이 많다.

3.5. 펄스 레이저


Mode Locking 등의 특수한 기법을 통해 펄스의 폭이 극단적으로 짧은 레이저를 만든다. 펄스의 폭이 짧은 것은 수 펨토초 수준이다.
펄스의 폭이 펨토초 수준으로 짧아지면 레이저의 스펙트럼이 넓어진다. 이는 시간-에너지 불확정성의 원리에서 시간이 짧아지면 에너지의 불확정성이 커지는 것에서 기인한다.
이것 외에도 다양한 특성을 가지고 있으므로, 연구, 가공 등등 여러가지 분야에서 사용된다.

3.6. 광섬유 레이저


광섬유 코어에 희토류 입자등을 도핑하여 펌프 레이저를 도파시키면 희토류 이온의 전자가 들뜨게되어 밀도 반전(population inversion)이 일어나게 되는데, 여기에 이보다 짧은 파장의 빛을 도파시키면 그 파장의 빛이 증폭된다. 가장 흔한 것은 976 혹은 1480 nm의 파장으로 펌핑하여 광섬유 통신에 쓰이는 1550 nm의 빛을 증폭시키는 어븀 도핑 광섬유. 장거리 통신에서 손실되는 빛을 벌충해 주는 목적으로 사용된다. 또한, 광섬유레이저는 직경이 좁으며 길이가 길다는 기하학적 특성에 기인하여, 열 관리가 용이하며 빔 품질을 좋게 할 수 있다는 이점이 있어서, kW 급 고출력 레이저 기술에도 응용된다. 이때, 주로 쓰는 광섬유는 976 nm의 파장에서 펌핑하여 1064 nm의 빛을 증폭시키는 이터븀 도핑 광섬유.

3.7. 화학 레이저


말 그대로 화학 반응을 이용해서 밀도반전과 유도방출을 일으키는 레이저다. 대량의 화학약품을 반응시킬 수 있기 때문에 연속발진 형으로 MW급 고출력도 가능하며, 주로 미사일 요격 용도의 군용 레이저로도 연구되고 있다. 하지만 사용되는 화학약품 자체가 워낙 독성도 강하고 상당히 위험하다. (삼불화 질소, 불화수소, 불화중수소, 염소, 요오드 전부 다 독성물질이고, 수소는 고폭발성, 중수소는 고폭발성에 방사성 물질이다.) 크게 다음 세 가지 화학레이저가 있다.
  • 불화수소 레이저
에틸렌과 삼불화질소를 반응시켜 불소 라디칼 생성물을 만든다음 불소 라디칼을 수소 혼합가스와 반응시켜 높은 에너지 준위를 가지는 불화수소를 생성하고, 불화수소가 유도방출이 이루어지면서 2.8µm 파장의 강력한 빔을 얻는다. 대기중에서 빔이 잘 감쇠되므로 주로 대기권 외부에서의 사용에 적합하다.
  • 불화중수소 레이저
불화수소 레이저와 비슷하지만 수소 혼합가스 대신에 중수소 혼합가스를 반응시킨다. 불화중수소의 유도방출로 레이저가 발진되는데 발생되는 빔의 파장은 3.8µm이며 대기중에서 빔이 잘 감쇠되지 않기 때문에 공기중에서 사용이 유효하다.
  • 화학 산소 요오드 레이저
수산화칼륨, 과산화 수소를 염소가스와 반응시켜 높은 에너지준위를 가지는 산소를 생성시킨 후, 산소를 요오드 가스와 반응시켜 에너지를 요오드 원자에 전달한 후 요오드가 유도방출을 하면서 1.315µm의 강력한 빔을 발진하는 원리다.

4. 레이저의 응용



4.1. 산업용 레이저


[image]
레이저를 이용한 CNC 커팅 사진 출처

산업현장에서 레이저는 절단, 천공, 용접 등의 용도로 폭 넓게 사용중이며, 이 외에 정밀계측 분야에서도 응용되고 있다.
레이저를 이용한 금속 또는 플라스틱의 가공은 레이저의 에너지를 열 에너지로 바꾸어 활용하는 것으로, 이를 이용한 공정이 깨끗하고 정확하며 경제적이다.
주로 사용되는 레이저는 Nd:YAG 레이저와 CO2 레이저가 있다. 레이저 가공 참조.
또한 CD, DVD 등의 정보 저장 및 재생의 기능에 응용되고 있으며, 광통신에도 사용되는 등 정보통신용 광소자로도 이용되며, 이 분야에는 대부분 반도체 레이저를 쓴다.
건설현장에서 수평 또는 수직의 기준선을 설정하고 두 위치 사이를 정밀하게 측정 하는 등의 용도로 많이 사용한다.
청소용으로 녹이나 페인트, 먼지 등을 제거하는데 이용되기도 한다. 영상
용접용으로는 손에 들고 사용할 수 있을만큼 소형화가 이루어져 기타 용접들보다 쉬운 용접이 가능하게 되었다.

4.2. 의료용 레이저


가장 많이 사용되는 레이저는 자외선 대역의 엑시머[11] 레이저와 적외선 대역의 Nd:YAG 레이저이다.
장점
  • 기존의 절개치료를 대체할 수 있어 시술이 간단하고 회복이 빠르다.
  • 제거하고자 하는 세포 조직이 잘 흡수하는 파장을 선택하여 치료함으로써 주변의 건강한 세포에 영향을 주지 않으면서 해로운 세포를 제거할 수 있다.
기존 라식, 라색등 각막의 두께를 조절하는 치료와 피부를 치료하는 범주를 넘어서 최근에는 혈관에 광섬유를 넣어 내부에 있는 세포까지 레이저가 도달하도록 하여 절개하지 않고 내부에 이상이 있는 부위를 치료하는 기법이 사용되고 있다.[예]
또 탄산가스 레이저는 피부과에서 많이 사용하는데 부작용이 적어 많이 사용된다.
탄산가스레이저는 10600nm(나노미터)의 파장을 가진 것으로 조직의 수분에 흡수되는 성질을 이용하여 피부조직에 레이저 광선을 조사하면 피부 조직에 열에너지가 전달되어 조직의 수분이 기화됨으로써 피부가 깎아져 나가는 원리를 이용한 것이다.
탄산가스레이저는 대부분 바르는 마취연고를 사용하여 시술이 가능하며 시술 후 2-3일 후부터 세안이나 화장이 가능할 정도로 간편하다. 탄산가스 레이저의 경우 치료 후 비교적 통증과 부종이 심하지 않고 레이저 자체가 살균력이 있으므로 치료 후 감염될 확률이 적은 장점이 있다.
레이저 시술의 부작용으로는 치료한 부위에 발생하는 색소 침착이 가장 흔하며, 이외에 색소 저하증, 홍반, 반흔등이 있을 수 있다. 이러한 부작용들은 시술 전 처치 혹은 후 처치를 통하여 최소화할 수 있다. 검버섯, 한관종, 점, 여드름 흉터, 비립종, 쥐젖, 황색종, 표피모반 등의 치료에 이용되고 있다. 탄산가스 레이저 출처

4.3. 군용 레이저



미 해군 레이저무기체계 (LaWS) PR Video
레이저의 특성이 군사적으로 유용했기 때문에, 레이저는 발견 이래 군사무기에 절찬리에 활용되었다. 이 부분에서 가장 유명한 것이 레이저 거리 측정기와 링 레이저 자이로스코프[12]이다. 이 외에 모의 전투훈련, 미사일 유도장치(Laser Designator) 등에 사용되고 있다.
레이저 거리 측정기는 초기에 루비레이저를 사용하였으나, 적의 눈에 인지되는 단점과 사람의 눈에 손상을 줄 수 있다는 단점 때문에, 최근에는 눈에 영향을 주지 않는 1.6μm 대역의 라만 레이저, OPD 레이저 등을 고반복률로 만들어 사용하는 추세에 있다.
보병들의 조준 보조 및 보정용으로도 사용된다.[13] AN/PEQ-2 ITPIAL이나 AN/PEQ-15 ATPIAL 등이 대표적 사례. 현대 보병전이 사실상 근접전이 되어감에 따라 근거리에서 목표를 빠르게 조준, 사격하여 상대방을 제압 내지 사살하는 방향으로 흘러가다보니 상대방에 대한 조준 시간을 단축하는 것이 현대 보병의 주요 발전 방향이 되고, 이에 따라 여러 방법 가운데 하나로 위의 물건들이 나오게 된 셈.
여기에서 한 발 더 나가 레이저에 암호를 걸어 아군의 공격을 정확하게 유도하기도 한다. AN/PEQ-1 SOFLAM이 대표적 사례로, 이 녀석은 이 기능이 없었다면 그냥 프로젝터 닮은 네모박스 모양의 망원 단안경 그 이상도 이하도 아니다. 사실 이 녀석 자체가 '암호화된 레이저를 쏘는 레이저 포인터' 정도의 물건이 필요했던 미군 특수부대들을 위해 만들어진 측면이 크다.[14]
최근에는 이러한 보조적 용도의 레이저뿐만이 아니라 직접적인 방어 무기로써의 레이저도 절찬리에 개발되고 있는데, 미사일 방어체계와 연관하여 날아오는 미사일을 공중에서 격추하기 위한 4μm 또는 10μm대역의 고출력 레이저가 개발되고 있으며, 이를 장거리로 전송하는 장치와 함께 체계를 구성하여 현장에 적용하는 추세이다.
레이저의 출력이 공격용 무기화에 충분할 정도로 높아져서 해군함정에 레이저 무기를 장치하는 추세이다. 미해군은 소형 UAV나 소형보트 등의 위협을 파괴할 수 있는 30 kW급의 레이저를 배치하고 있고, 더 고출력 (50kW) 또는 이를 여러개 묶어서 60-100kW급을, 미래에는 300kW급의 레이저를 함정에 설치할 계획이다. 이 정도면 충분히 대공 미사일을 대체할 수 있는 단계이며, 미 해군은 미사일 대신 레이저를 차세대 함정의 대공방어무기의 주력으로 할 계획이다.
게임 속 무기가 현실로? 레이저 무기.
https://youtu.be/maInXKkzqEo
중국의 개발 정보는 잘 공개하지 않지만, 중국에서도 무기나 살상용으로 전환이 가능한 레이저 연구는 공군에서 활발하게 진행되고 있다. 중국 공군 공학대학 연구진도 우주 쓰레기를 없앨 수 있는 우주 레이저 스테이션의 모의 실험을 성공적으로 마쳤다고 보도하였기 때문이다.#
레이저 무기도 러시아가 미국보다 앞질러서 2018년 3월에 이미 미사일 요격용으로 실전 배치하였다!연합뉴스 관련 기사
만화로 보는 군용 레이저

4.3.1. 관련 문서



5. 안전 기준


레이저 종류
파장
(μm)
등급 분류
1등급
2등급
3등급
4등급
He-Ne(연속)
0.6328
6.98μW
1mW
0.5W
>0.5W
Ar-ion(연속)
0.515
0.4μW
1mW
0.5W
>0.5W
CO2(연속)
10.6
0.8mW
-
0.5W
>0.5W
CO2(100ns, 펄스)
10.6
80μJ
-
10J/cm2
>10J/cm2
Nd:YAG(연속)
1.06
0.2mW
-
0.5W
>0.5W
Nd:YAG(20ns, 펄스)
1.06
2μJ
-
0.16J/cm2
>0.16J/cm2
미국표준협회(ANSI)는 레이저에 대하여 4단계로 안전등급[15]을 분류하고 있다.
  • 1등급: 사람 눈에 노출되었을 때 손상이 거의 발생하지 않는 수준.
  • 2등급: 혐오 반응이 눈의 손상을 방해할 수 있는 상대적으로 낮은 출력의 가시광. 1000초 이하의 노출에는 위험하지 않으나 그 이상의 노출에는 위험.
  • 3등급: 직접 노출이 해로울 수 있는 수준에서 방출할 수 있는 중간출력의 레이저. 분산 반사된 빛은 눈에 위험을 주지 않는 수준.
  • 4등급: 분산 반사로부터의 손상효과가 일어날 수 있는 수준에서 방출되는 고출력 레이저.

6. 레이저 포인터


최근 들어 덕질 분야(...)로 각광받는 종목. 해당 문서 참조.

7. 관련 문서



7.1. 창작물에서 등장하는 레이저 도구/병기


  • 기동전사 건담 시리즈 - 콜로니 레이저, 솔라 레이
  • 닥터후 - 레이저 스크루드라이버[16]
  • 듄 시리즈 - 라스건
  • 메탈 슬러그 시리즈 - 레이저 건
  • 무한의 마법사 - 주인공 아리안 시로네가 시전한다.
  • 스타워즈 - 라이트세이버[17], 슈퍼레이저, 터보레이저[18]
  • 스타크래프트 시리즈
  • 에이스 컴뱃 시리즈 - 전술 레이저 시스템(Tactical Laser System. TLS)[19], 엑스칼리버, ADF-01, ADFX-01, ADF-11F
  • 커맨드 앤 컨커 시리즈 - 처음에는 지구 마피아 군단인 NOD의 방어 무기로 등장하며 나중에는 공격 무기로도 쓰인다. 지구방위군 GDI로 플레이 하면서 NOD의 기지를 후반에 공격할때 대형 레이저 방어시설 오벨리스크 오브 라이트의 레이저 볼트가 달아오르는 소리가 엄청난 위압감을 유발한다. 위력 역시 어설픈 경장갑 차량 정도는 한번에 녹아내리고 중장갑 탱크한테도 상당한 데미지를 주는 걸로 봐서 현재 Airborne 레이저보다 더 발전된 가까운 미래의 레이저 무기 이미지를 하고있다. 이 강력한 레이저가 후반 버전에서는 Avatar라는 걸어다니는 전투용 로봇에도 탑재된다.
  • 탐정 갈릴레오 - '불타다' (드라마 1화) 편에서 사용된다.[스포일러]
  • 테일즈위버 - 고대 로봇, 녹턴 드 뷔엥[20]
  • 헤일로 시리즈 - 스파르탄 레이저
  • 하프라이프 - 동작 감지식 레이저 지뢰(트랩마인)
[1] 빛이 파동의 성질을 지니고 있다는 것을 알 것이라고 믿는다. 파장은 마루(봉우리)와 마루 골짜기와 골짜기사이의 길이의 말하는 것이며, 위상은 물결의 어긋남을 뜻한다. 동위상은 물결이 어긋나 있지 않고 곂쳐져 있는 것이다. 따라서 이경우의 빛은 잔잔한 수면 위의 정련된 깨끗한 물결과 같다고 할 수 있다.[2] 둘 다 반사 100%인 거울을 사용한다면, 충분한 에너지가 공급된다는 가정하에 진짜로 폭발하게 된다.[3] 전기를 집어넣거나, 아님 강한 빛(...), 화학반응, 혹은 핵분열(...)등이 사용된다. [4] 매질 뿐만이 아니라 다른 구성 요소의 영향도 받는다.[5] 산화알루미늄(Al2O3)에 미량의 크롬(Cr)이 첨가된 세라믹 소재 [6] 다만 천연루비는 불순물이 많아서 인공루비를 사용한다.[7] 네오디뮴-야그, 엔디-야그 등으로도 불린다[8] YAG(Y3Al5O12) 세라믹에 희토류 금속인 네오디뮴(Nd)이 미량 첨가된 고체.[9] 1기압의 1/760이다. 대락 1 mmHg[10] 다만 큰 발산각 또한 여러가지 photonic crystal과 external lense를 사용해서 충분히 극복 가능하다.[11] ArF 또는 KrF 등이 불안정하게 들뜬 상태.[예] 결석, 궤양,출혈차단, 망막응고 등. 응용범위는 계속 증가 중.[12] 회전각을 검출.[13] 영화나 게임 등에서 자주 나오는 저격수의 빨간 레이저 빔을 생각하면 편하다.[14] 당연히 이녀석이 발사하는 레이저는 일반 레이저와는 차원이 다른 레벨의 물건이다.[15] 이전에는 Class I, II, IIa, IIIa, IIIb, IV로 분류되었으나 최근 Class 1, 1M, 2, 2M, 3R, 3B, 4로 분류. 자세한건 영문위키피디아에서 확인[16] 마스터가 사용한다.[17] 이쪽은 레이저 병기보단 플라즈마 커터에 가깝다.[18] 원리를 따져보면 탄체를 가속시켜 쏘는 입자가속포 비스무리한 물건이라 레이저는 아니다. 다만 영미권 SF에 지대한 영향을 끼친 스타워즈 시리즈의 영향력 덕분인지 탄체를 발사하는 플라즈마 병기나 입자포 계열 무기에 레이저라는 이름이 붙는 경우가 왕왕 생기게 되었다. 스타워즈 시리즈에서 레이저는 보병 무기부터 시작해서 전함 클래스, 심지어는 데스스타에 탑재하는 초대형 무기에 이르기까지 가장 일반적인 무기 체계이다.[19] 전투기에 탑재되는 소형화된 레이저 포이다.[스포일러] 범인이 피해자를 살해할 때 사용한 도구가 탄산가스를 매질로 사용하는 레이저였다. 레이저로 피해자의 머리를 노려 쏘아 머리를 태워서 그 여파로 피해자가 불타 죽은 것.[20] 에델에서 오바드가 만든 전투 인형이다.