라그랑주점

 


Lagrangian point
1. 개요
2. 종류
2.1. 직선상의 라그랑주점
2.2. 비직선상의 라그랑주점
3. 용도
3.1. L1
3.2. L2
3.3. L3
3.4. L4와 L5
4. 관련 문서


1. 개요


라그랑주점(點). 수학자, 천문학자인 조제프루이 라그랑주(Joseph Louis Lagrange)가 발견하였다.
라그랑주점은 공전하는 두 개의 천체 주변에서 알짜 중력과 원심력이 평형인 지점을 말한다. 삼체문제의 특별한 경우로, 삼체문제는 일반해가 없는 것이 이미 증명되었으며, 라그랑주점과 같은 특수해만이 발견될 뿐이다. 세 물체의 상호작용에 관한 일반해가 없다는 증명은 훗날 카오스 이론의 모태가 된다.
'중력적으로 안정적이다'는 것은, 질량이 커다란 물체 M1과 그 물체를 중심으로 공전하는 상대적으로 작은 질량의 물체 M2가 있을 경우, M1과 M2에 비해 무시할 수 있을 정도의 질량을 가진 M3가 M1과 M2에 대해 상대적으로 정지할 수 있다는 것이다.
즉, 태양과 지구가 있을 때, 태양과 지구에 비해서 '''무시할 수 있을 정도로 가벼운''' 물체가 태양과 지구에 대해 상대적으로 정지할 수 있는 위치라는 이야기다. 물론 지구와 달의 경우에도 적용된다. 우주개발에서 중요한 역할을 한다.

2. 종류


[image]
라그랑주점은 다섯 곳이 존재한다.

2.1. 직선상의 라그랑주점


태양과 지구를 예로 들 경우, 태양과 지구를 이은 직선상에 위치하는 라그랑주점으로 L1, L2, L3이 있다. L1은 태양과 지구 사이에 존재하며, L2는 지구의 태양 반대편에 존재하고, L3은 태양의 지구 반대편에 존재한다.
원래 L1과 L2의 경우, 지구보다 공전궤도 반지름이 작거나 크기 때문에 공전주기도 달라진다. 공전궤도 반지름이 작아지면 공전주기도 짧아지며, 반지름이 길어지면 공전주기도 길어진다. 지구보다 금성의 공전주기가 짧고 화성의 공전주기가 긴 것과 같은 현상이 일어나는 것이다.
하지만 L1, L2는 지구와 가까이 있기 때문에, 지구의 중력에도 큰 영향을 받는다. 그래서 L1은 원래 지구보다 빠르게 공전하게 되지만 지구가 뒤로 잡아당겨 공전속도가 느려지게 되며, L2는 원래 지구보다 느리게 공전하게 되지만 지구가 앞으로 잡아당겨 공전속도가 빨라지게 된다. 고로 L1과 L2는 지구보다 태양에 가깝거나 먼 궤도를 돌면서도 지구와 같은 주기로 공전하게 된다.
L3은 지구 정반대편에 있으며, 공전궤도 반지름은 지구보다 조금 더 크다. L2와 마찬가지로 원래는 지구보다 더 느린 속도로 공전하게 되지만, 태양과 지구의 중력으로 인해 속도가 빨라져 지구와 같은 주기로 공전하게 된다.
이 지점들은 상대적으로 불안정하다. 원래 위치에서 L1-L2를 이은 선의 수직방향으로 움직이게 되면 L1과 L2의 중력에 의해 다시 원래 위치로 돌아오게 된다. 하지만 L1이나 L2 중 하나를 향해 움직이기 시작하면 원래의 위치에서 벗어나게 된다.

2.2. 비직선상의 라그랑주점


태양과 지구의 직선상에 있지 않은 라그랑주점으로는 L4, L5가 있다. L4와 L5는 트로이점이라고도 하는데, 이건 태양-목성의 L4, L5에 위치한 트로이 소행성군[1][2]에서 따온 이름이다.
이 위치들은 M1과 M2를 이은 선을 밑변으로 하는 정삼각형의 꼭지점에 위치하는데, 원리는 L1, L2, L3과 마찬가지로 M1과 M2의 중력에 의해 이리저리 잡아당겨지면서 한 곳에 안정적으로 자리잡게 되는 것이다. 천체 문제에서 완전한 정다각형이 등장하는 일이 드물기에, M1이 M2보다 훨씬 무거운 리밋에서 정삼각형이 되는 거겠지라고 생각하기 쉬운데, 실제 계산을 해 보면 두 천체의 질량비에 전혀 무관하게 언제나 정삼각형의 꼭지점 위치에 L4, L5가 있게 된다.
L4와 L5는 L1, L2, L3보다 안정적인데, 이는 M2에 지나치게 가까이 있지 않으면서도 M2와 같은 궤도를 돌기 때문이다. 이 경우, M1과 M2의 질량비가 24.96:1보다 큰 이상(그러니까 M2가 M1에 비해 작으면 작을수록), 원래 위치에서 벗어나도 전향력에 의해 원래 위치로 되돌아게가게 된다.[3] 다만 이 서술에는 문제가 있다. L4와 L5의 안정성은 점근적 안정성이 아니라 랴푸노프의 안정성으로, 어떤 섭동에 대하여 원래 위치로 돌아가지는 않지만 L4와 L5로부터 어느 거리 이내를 벗어나지 않을 뿐이다. 물론 이 역시도 작은 섭동에 대해서만 해당한다.
물론 M2가 너무 작아서 M3을 무시할 수 있을 정도가 안되면 이러한 안정성은 깨지고, M3의 위치는 변하다가 결국 M2와 충돌하거나 궤도에서 벗어나게 된다. 이러한 과정으로 이 형성되었다고 추정되고있다. 태양-지구의 L4 지점에 작은 천체들이 몰렸고, 처음에는 안정적으로 그 자리에 있다가 점점 자라면서 더이상 지구에 비해 무시할 수 없을 정도로 성장하여, 결국 이리저리 흔들리다가 지구에 충돌하게 되었다는 것이다. 달의 여러가지 특성(행성 대비 지나치게 큰 크기, 크기에 비해 낮은 밀도 등등)을 설명하므로 정설로 취급받고 있다.

3. 용도


라그랑주점은 우주개발에서 중요한 역할을 하며, SF에서도 자주 사용되는 요소다.

3.1. L1


태양-지구에서 태양 관측 위성이 위치하기에 좋아서 많은 위성이 돌고 있다. 현역으로는 SOHO가 대표적. 지구-달에서 L1은 최소한의 델타-V로 지구와 달을 왕복할 수 있어 우주 정거장이나 스페이스 콜로니를 설치하기에 적절하다. 또한 지구-달에서 L1은 지구와 달 사이에 끼어 있는 지라 지구와 달 양쪽 모두와 비교적 가까운 위치에 놓여 있고(엄밀히 말하면 지구보다는 달 쪽에 더 가깝긴 하다), 따라서 지구와 달을 연결하는 중계지점으로서 적합한 위치에 있는 편이다(또한 달로부터 채굴한 각종 자원을 공급받기도 편리한 위치이기도 하다.).
NASA는 지구 자기장 연구 미션인 THEMIS 미션에서 발사된 다섯 위성 중 두 대를 달 자기장 연구용 ARTEMIS 미션으로 떼어내느라 지구-달의 L1 및 L2에다 리사쥬 궤도[4]를 돌려버리다가 달 궤도를 형성하기도 했다. 이렇게 L1 및 L2는 다른 궤도로 옮겨가기 전 좋은 타이밍을 기다리며 가져다놓는 일종의 주차 궤도 용도로도 이용된다.
총몽의 금성 테라포밍에서, 태양광을 가리기 위한 막을 금성-태양간 L1 지점에 설치했다는 설정이 있다. 또한 카우보이 비밥에서도 금성 테리포밍에 관련하여 같은 설정이 나온다.

3.2. L2


태양-지구에서 항상 지구의 그늘에 위치하기 때문에, 우주 관찰을 목적으로 하는 우주 망원경을 설치하기에 적절하다. 미국 NASA에서는 이 L2 지점에 제임스 웹 우주 망원경을 올리기 위해서 고심하고 있다. 참고로 태양-지구 L2 지점은 거리가 워낙 멀어서, 현재 기술로는 우주왕복선이나 오리온 다목적 유인 우주선 등의 유인 우주선들이 태양-지구 L2 지점까지 갈 수가 없기 때문에, 제임스 웹 우주 망원경의 설치에 실패하거나 망원경이 고장 나면 그대로 버려야한다.
참고로, 태양-지구 L2 지점은 지구에서 약 150만 km 떨어져 있으며, 지구-달 거리(약 38만km)의 4배 정도 되는 거리이다.
지구-달에서 L2는 뒷면에 설치할 통신위성의 위치로 적합하며, 우주 정거장이나 스페이스 콜로니를 설치하기에도 적절하다. 또한 지구-달에서 L2는 지구에서는 가장 멀리 떨어져 있지만 동시에 달과는 비교적 가까운 위치에 있는 편이며(그렇기에 L1이 그러했듯이 달로부터 채굴한 각종 자원을 공급받기 편리한 위치이기도 하다.), 더불어 지구·달을 태양계의 다른 행성들(특히 화성이나 목성 등의 외행성들)이나 소행성들(특히 소행성대의 소행성들)과 연결하는 중계지점으로서 적합한 위치이기도 하다.
기동전사 건담 시리즈우주세기 세계관에서 등장하는 사이드3#s-1과 이를 바탕으로 건국된 콜로니 국가인 지온 공국은 지구-달간 L2 지점에 존재한다고 설정되어 있다.

3.3. L3


태양-지구에서 태양에 가려져 보이지 않는 위치라 제2의 지구 같은 것이 존재한다는 설정이 SF에서 사용되곤 한다. 물론 실제로는 지구의 공전궤도가 약간 타원형이라 종종 L3위치에 있어야할 천체가 보이곤 해야하는데 그렇지 않고, L3위치에 존재하는 천체에 의한 중력적 효과도 관측되지 않았으며, 무엇보다 직접 탐사선을 보내보아도 100km보다 큰 물체는 발견하지 못했다. 탐사선의 한계로 100km 이하의 물체는 있을지도 모르지만, 그런게 있더라도 제2의 지구와는 거리가 멀다. 태양계에서 가장 작은 크기의 구형 천체인 토성의 위성 미마스의 지름이 400km에 가깝다.
무엇보다 라그랑주점은 '''M1과 M2에 대해 질량이 무시할 수 있을 정도인 M3'''에 적용되는거라, L3지점에 제2의 지구가 있었더라도 이미 중력적으로 불안정하여 다른 위치로 튕겨나가거나 지구와 충돌했을 것이다. 물론 질량이 지구에 비해 훨씬 작은 대형 우주 정거장을 설치하여 사용할 수는 있을 것이다. 또한 지구-달에서 우주 정거장이나 스페이스 콜로니를 설치하기에도 적절하다. 지구와도 멀리 떨어져 있고 달과도 멀리 떨어져 있다는 점이 약간의 난점으로 작용하긴 하지만.

3.4. L4와 L5


가장 안정적이라 태양-지구든 지구-달이든 항구적인 우주 정거장스페이스 콜로니의 건설에 가장 적절한 위치이다. 중력적으로 가장 안정된 위치들이기 때문에 L1·L2·L3에 비해서 보다 많은 수의 우주 정거장과 스페이스 콜로니를 건설할 수 있다.
또한 우주 정거장이나 스페이스 콜로니 등으로 대표되는 인공천체는 안정적으로 위치할 수 있지만 반면 자연천체는 중력적인 불안정함으로 인해 위치하기 어려운 L1·L2·L3과는 달리, L4·L5에서는 자연천체 역시 안정적으로 위치할 수 있기도 하다. 예를 들어, 소행성을 우주 어딘가(예를 들면 소행성대 등)에서 적당히 가져 와서 갖다 놔도 그 위치가 L4·L5라 한다면 안정적으로 위치할 수 있고, 그 소행성을 장기적인 과학 연구 대상으로 삼을 수 있는 것은 물론이고 자원채굴 등의 각종 용도에 유용하게 활용할 수 있게 된다. 물론 일부러 인위적으로 가져다 놓지 않는다 하더라도 확률적으로는 우연히 L4·L5에 소행성이 자연적으로 날아 와서 거기에 정착(?)할 가능성 역시 아예 없진 않기도 하며, 소행성 문서를 참조하면 알 수 있지만 이미 태양계에서는 실제로 이런 사례들이 다수 발견된 바 있다(특정한 행성의 라그랑주점에서 공전하는 소행성은 보통 이런 사례들이다. 태양계의 경우 목성의 라그랑주점에 이런 소행성들이 많다. 자세한 내용은 소행성 문서를 참조할 것이다.). 지구의 경우는 2010 TK7 문서 참조.
소행성대 등지에서 적당한 소행성을 몇 개 지구 근처로 가지고 와서 지구-달 L4·L5 지점에 박아 놓고 우주 정거장스페이스 콜로니의 건설 등에 필요한 자원을 채굴하기 위한 항구적인 우주개발 거점으로 활용한다는 아이디어는 SF에서 자주 묘사되는 아이디어이며, 이와 비슷한 아이디어들이 의외로 현실에서도 진지하게 검토되고 있기도 하다. 지구 근처로 날아 오는 소행성들 중 적당한 녀석들을 몇 개 낚아서 지구-달 L4·L5 지점에 박아 놓는다거나 하는 식으로 의외로 SF 작품들의 묘사보다도 좀 더 현실성(?)이 있는 계획들이 제시되고 있다. 굳이 가지러 가지 않아도 알아서 지구 근처로 와 주시니 그것들 중 적당한 걸 몇 개 낚아채서 써먹자는 것이다.

4. 관련 문서


  • 헤일로 궤도: L1, L2, L3 점을 중심으로, M1과 M2를 지나는 직선을 축으로 하여 공전하는 궤도. 앞서 '직선 상의 라그랑주점' 문단에서 M1과 M2를 잇는 직선에 수직한 방향으로 천체가 벗어날 경우 다시 라그랑주점 방향으로 되돌아오는 방향으로 인력이 작용한다고 했는데, 이 인력을 구심력으로 삼아 원운동을 하게 될 경우 헤일로 궤도를 그리게 된다. 천체가 정확히 L1, L2, L3점에 있지 않고 그 근처에만 있어도 비교적 고정된 궤도를 가질 수 있다는 의의가 있는데, L1, L2, L3점이 그렇듯 헤일로 궤도 역시 안정성이 높지는 않다.
  • 목성: 앞서 말했듯 목성의 라그랑주 포인트에는 엄청난 양의 소행성대가 분포한다. 지구에 생명체가 온전히 존재하는 것에 목성의 역할이 크다고 하는 것은, 목성 자체가 소행성을 빨아들이고 있는 것도 있지만, 목성의 라그랑주 포인트가 태양 반대편에서 오는 소행성도 묶어놓는 것도 큰 역할을 한다. 라그랑주 포인트가 있기 때문에 목성이 공전하면서 전방위 소행성 탱킹을 할 수 있는 것이다.
  • 창어 계획: 중국의 달탐사프로그램으로, 지구-달의 라그랑주 포인트에 중계위성을 배치하여 달의 뒷면을 탐사했다.

[1] 나아가 다른 행성들의 L4, L5에 있는 소행성들의 통칭으로 확장 되었으나, 금성, 지구, 천왕성은 각각 꼴랑 하나밖에 없고, 화성이 7개, 해왕성이 18개를 보유하고 있는 반면. 목성의 트로이 소행성군의 총수는 6천개가 넘는다.[2] 앞서가는 L4를 그리스군(Greek), 뒤따라오는 L5를 트로이군(Trojan)이라고 세분해서 칭하기도 한다.[3] L4 (M2의 진행방향 앞의 지점)를 기준으로 설명하면, L4보다 약간 더 앞에 있으면 M2에 의해 당겨지고, L4보다 약간 더 뒤에 있으면 M1에 의해 당겨져서 원위치로 되돌아가게 된다. M1~3과는 달리 모든 방향으로 안정된 궤도인 것이다.[4] Lissajous Orbit. 라그랑주점을 공전하는 궤도로, 제임스 웹 우주 망원경에게 예정되어 있는 헤일로 궤도가 리사쥬 궤도의 특수 사례라 할 수 있다.