부영양화

 

富營養化, Eutrophication(Hypertrophication)
1. 개요
1.1. 영양염
2. 발생
2.1. 자연환경
2.2. 인간활동
3. 전개
3.1. 유기물 및 영양염 유입
3.2. 식물플랑크톤 대량 발생
3.3. 유기물 침강, 분해
3.4. 저층 용존산소 고갈
3.5. 빈산소 수괴의 형성
3.6. 저서생물 사멸
3.7. 악순환의 반복
3.8. 무산소 환경
4. 결론
5. 해결 방안


1. 개요


수중에 영양염(nutrients)의 농도가 자연상태일 때보다 더 높을 경우에 '''부영양화되었다''' 또는 '''부영양화 상태''' 라한다. 호수와 만(灣)과 같이 물이 정체되어있고, 상류 또는 주변에서 농사용 비료, 축산 분뇨 또는 생활하수 등 유기물과 영양염이 대량 유입되면 그 수중환경에 쌓이면서 발생할 수 있다. 부영양화는 그 자체로 인한 문제보다 그 이후에 따라오는 문제들이 더 심각하다.
물에 영양이 풍부해졌다는 단어 자체로 보면 긍정적인 현상이 아닌가 오해할 소지가 있으나, 정확히 말하면 '썩은 음식더미에 깔려 숨도 못 쉬고 죽는 것'에 가까워 심각한 환경 오염이다.

1.1. 영양염


일반적으로는 질소(N, Nitrogen)와 (P, Phosphorus)을 들 수 있다. 그중에서도 질산염(NO3, nitrate), 인산염(PO4, phosphate)이다. 식물플랑크톤의 경우 세포 내 인:질소:탄소 비율이 1:16:106 으로 이루어져있다[1]. 그중 탄소는 가장 많은 양을 차지하지만 물 속에 녹아있는 이산화탄소 및 탄산염계열이 풍부하기 때문에 보통 인과 질소가 부족해 식물플랑크톤의 성장 및 번식에 제한요소로 작용한다.

2. 발생


부영양화는 자연적으로 발생할 수 있는 현상이다. 그러나 인간활동으로 인해 그 발생빈도나 발생지역이 증가하고 있다.

2.1. 자연환경


강, 호수, 하구역 주변이나 상류에서 비가 내리거나 토양의 침식으로 토양에 있던 영양염과 유기물이 강이나 바다로 흘러들어가게된다. 이렇게 흘러들어온 유기물과 영양염은 물의 순환이 느린 곳에 쌓이게된다. 유기물은 수중 미생물에 의해 분해되어 영양염이 된다. 수중 내 영양염의 농도는 높아지고 부영양화가 일어난다.
자연적인 부영양화는 일시적이고 특별한 경우에만 나타난다.

2.2. 인간활동


농업에서 비료의 이용, 축산폐수, 생활하수 등이 유입되어 영양염의 양 자체가 늘거나, 강이나 호수, 하구역의 수변이 개발되고 불투수층이 증가하면서 영양염의 유입을 줄여주거나 늦춰주는 완충지역이 사라져 부영양화를 촉진하고 있다.
축산폐수, 생활하수 같은 점오염원의 경우, 하수종말처리장이나 자체 정화시설 등으로 어느정도 관리를 하고, 할 수 있다. 그러나 비료나 기타 비점오염원의 경우에는 비가오면 우수관이나 도랑, 땅 표면등을 통해 하천으로 흘러들어가고 있어 관리가 어렵다. 자연환경에서 수변식물 및 투수층은 영양염을 흡수하거나 잡아둘 수 있어 비점오염원의 유입을 줄여줄 수 있었지만, 개발에 의해 사라지고 있는 상태이다.

3. 전개


부영양화의 발생과 그 뒤에 일어날 수 있는 현상.

3.1. 유기물 및 영양염 유입


위의 설명처럼 유기물 및 영양염이 수중 환경으로 유입된다. 그중 유기물은 미생물에 의해 영양염으로 분해된다.
수중환경 내 인과 질소가 풍부해진다.
  • 비옥화 : 적당량의 영양염은 식물플랑크톤의 번식 및 성장에 도움을 준다. 이런 1차생산량의 증가는 동물플랑크톤 같은 1차소비자 및 상위 소비자의 증대를 가져와 생태계가 더 건강해질 수 있다. 단 적당량의 유입이다.

3.2. 식물플랑크톤 대량 발생


영양염이 풍부한 상태에서 수온이 성장 및 번식에 적합하다면 식물플랑크톤이 대량으로 번식하게된다. 이때 번식하는 종류에 따라 녹조, 적조(HABs; harmful algal blooms) 등으로 불린다.

3.3. 유기물 침강, 분해


플랑크톤이 수명이 다해 죽거나, 동물플랑크톤에 먹혀 배설되면 바닥으로 침강한다. 침강하면서 또는 바닥에 퇴적되고 미생물이 용존산소를 이용해 유기물을 분해한다.

3.4. 저층 용존산소 고갈


만약 평소와 같다면 용존산소를 적당히 사용하겠지만, 플랑크톤의 대량 발생 이후에는 유기물 양이 엄청나기 때문에 사용하는 산소의 양도 엄청나다. 표층의 경우는 빛이 있기 때문에 광합성을 통해 산소를 얻을 수 있지만, 빛이 없는 저층에서는 산소가 고갈된다.

3.5. 빈산소 수괴의 형성


산소가 사용만되고 다시 만들거나, 얻을 수 없기 때문에 저층의 용존산소 농도는 생물이 살아갈 수 있는 최저한도보다 낮은 빈산소 환경(hypoxia)이 된다.

3.6. 저서생물 사멸


이동성이 강한 어류, 또는 , 새우는 주변환경이 안좋아지면 다른 지역으로 이동할 수 있다. 그러나 바닥에 붙어살고 움직일 수 없는 저서생물의 경우, 산소가 부족하면 살고있던 그 자리에서 다 죽게된다. 특히 , 따개비 같은 생물은 현탁물식자[2] 로 물을 정화할 수 있는 능력을 가진 생물로, 이런 생물이 죽는다면 위의 현상이 악순환되어 더 심각한 상태로 만들 수 있다.

3.7. 악순환의 반복


유기물은 계속 유입되고, 식물플랑크톤 및 유기물을 걸러줄 수 있는 굴 같은 정화생물은 죽어나가고, 바닥으로 유기물은 쌓여가고, 미생물은 계속해서 산소를 쓰고, 바닥에 사는 생물은 계속 죽어나가고, 무한반복.

3.8. 무산소 환경


미생물이 유기물을 계속 분해하다가 결국에 저층 용존산소가 다 떨어지면 산소가 아예 없는 무산소 환경(anoxia)이 된다. 무산소 환경에서는 혐기성 미생물이 나타나 유기물을 분해하기 시작한다. 황화수소가 배출되며, 바닥 퇴적물은 썩어가게된다. 무산소 환경이 계속 유지되면 '''Dead Zone'''이라 불리게된다. 혐기성 미생물을 제외한 살아있는 생물이 없기 때문이다.

4. 결론


부영양화는 그 자체보다 그 뒤를 이어 녹조, 적조 등의 조류의 대량 발생, 빈산소 현상 등의 심각한 문제를 야기시킬 수 있다. 이런 문제는 그 수중 생태계를 위협할 수 있다.
  • 기존 생태계에 살고 있던 생물종을 감소시켜 생태계 내 생물다양성을 낮춘다.
  • 환경 악화로 기회종 및 외래종이 침입할 수 있다.
  • 생태계가 가지고 있는 기능을 마비시키거나 없앨 수 있다.
    • 기능 : 물질 분해, 영양염 순환, 1차 생산, 2차 생산, 오염물 이동 및 변환·대사, 퇴적물 이동, 먹이망 조절, 중요 서식처, 물리적 완충대, 토양 침식 관리[3]

5. 해결 방안


  • 인공적으로 인 흡수 물질을 부영양화가 일어난 지역에 투입해서 예방하거나 늦추는것이 가능하다.
  • , 홍합 같은 생물은 질소를 사용하고, 수질을 지속적으로 개선하기 때문에 대량으로 있을 경우 부영양화를 해결 할 수 있다.

[1] Redfield, 1958; Redfield ''et al.'', 1963, (CH2O)106 (NH3)16 H3PO4 ↔ 106CO2 + 122H2O + 16NO3^(1-) + PO4^(3-) + 19H^(1+)[2] 물을 들이마셔 물 속 유기물을 걸러먹고 배출, 또는 작은 촉수로 물 속에 떠있는 유기물을 잡아 먹음[3] Lisa A. Levin, Donald F. Boesch, Alan Covich, Cliff Dahm, Christer Erse´us, Katherine C. Ewel, Ronald T. Kneib, Andy Moldenke, Margaret A. Palmer, Paul Snelgrove, David Strayer, and Jan Marcin Weslawski. 2001. The Function of Marine Critical Transition Zones and the Importance of Sediment Biodiversity. Ecosystems 4: 430–451.