거리의 사다리
[image]
Distance Ladder
천문학에서 거리 측정에 사용되는 방법들을 모아 거리에 따라 정리한 도표. 가까운 거리에서부터 점차 측정에 사용되는 방법을 바꿔 가면서 먼 거리로 확장해 나가는 것을 사다리를 타고 올라가는 것에 비유하여 이러한 이름이 붙었다.
천문학에서는 무엇보다 중요한 것이 일단 목표를 찾아내는것, 그 다음으로는 그 목표까지의 거리를 구하는 것이다. 거리는 우주를 연구하는 데에 가장 큰 단서가 된다. 거리를 측정하는 것은 천문학에서 가장 중요한 목표 중 하나인데, 천문학에서 사용되는 모든 천체의 연구는 거리를 통한 영점 조절부터 시작하기 때문이다. 즉, 아무리 찾아낸 천체가 많아도 각각의 거리를 알지 못하면 개개의 천체를 동등한 위치에 놓고 비교하지 못한다는 말이다. 그 이유는 단순한데, 거리가 멀면 그만큼 천체가 작고 어둡게 보이기 때문. 거리를 모르면 그 천체의 크기가 정말 작고 어두운 건지 아니면 멀리 떨어져 있기 때문에 단순히 그렇게 보이는 것인지 분간할 수가 없다!
그러나 일반인의 상상을 초월할 정도로 멀리 떨어진 천체들을 다루는 천문학에서 거리를 측정하는 것은 그리 쉬운 일이 아니다. 쉽게 생각해서 지구상에서 쓰이는 거리 측정 방법[1] 으로는 태양계 내 행성까지의 거리를 재는 것도 벅차다. 실제로 현대 천문학의 초창기에는 천체까지의 거리 측정 오차가 수백%(!) 에 달하는 경우가 빈번했으며, 심지어 해당 천체가 우리 은하 내에 있는 것인지, 아니면 수십억 광년 떨어진 천체인지조차도 논란이 있었던 경우가 많았다.
이 때문에 거리 사다리는 온갖 잡다한 도구들로 뒤섞여 있는데, 이러한 다양한 방법들이 같은 천체에 대해서 사용되면서 교차 검증이 이루어져 서로를 상호 보완해주는 것이 천문학에서 거리 측정의 기본 골자이다. 즉, 거리 사다리에 새로운 거리측정방법을 도입하려면 우선 비슷한 대역에 있는 다른 방법들과 대조해보아 잘 맞는지 시험해보아야 한다.
과거 천문학자들이 이러한 방법을 무수히 반복하여 축적된 데이터를 기반으로 하기 때문에 현대 천문학에서 수십억 광년 떨어진 은하까지의 거리를 잴 수 있게 되는 것이다.
거리 사다리를 이루는 요소들 중 많이 사용되고 오차가 적은 것으로 판명된 방법들을 서술한다.
에드윈 허블이 발견한 허블 법칙을 이용한 거리 측정 방법. 멀리 떨어진 은하는 그만큼 빠른 속도로 멀어지고 있다는 사실에 기반한다. 적용 방법은 간단하다. 단순히 적색편이로 측정한 은하의 후퇴 속도에 허블 상수를 곱하면 거리가 된다. 현재 가장 널리 사용되는 허블 상수는 약 72km/s/Mpc. 우주 팽창은 거시적인 영역에서만 이루어지고 있기 때문에 허블 법칙도 어느 정도 멀리 떨어진 은하들에게만 적용이 가능하다. 안드로메다 은하처럼 가까이 있는 은하에는 사용할 수 없다. 극단적으로 멀리 떨어진 은하들(10억 광년 이상)에 적용할 수 있는 사실상 유일한 방법이다. 그런데 이 정도 먼 거리에서는 우주 팽창 속도 변화의 영향을 받기 때문에 실제 거리(빛이 여행한 거리)와 허블 법칙으로 측정한 거리 사이에 차이가 발생하게 된다. 암흑에너지[6] 도 이 차이로부터 발견된 것. 허블 법칙이 사용되는 수준이면 엄청나게 먼 거리이기 때문에 물리적인 거리가 크게 의미가 없다. 또한 허블 법칙으로 환산되는 거리는 우주모델에 따라, 허블 상수에 따라 변하기 때문에 천문학에서는 정확한 거리값보다는 적색편이(z)값을 애용하며, 적색편이≒우주의 나이≒거리가 동일하게 인식된다.
Distance Ladder
천문학에서 거리 측정에 사용되는 방법들을 모아 거리에 따라 정리한 도표. 가까운 거리에서부터 점차 측정에 사용되는 방법을 바꿔 가면서 먼 거리로 확장해 나가는 것을 사다리를 타고 올라가는 것에 비유하여 이러한 이름이 붙었다.
1. 중요성
천문학에서는 무엇보다 중요한 것이 일단 목표를 찾아내는것, 그 다음으로는 그 목표까지의 거리를 구하는 것이다. 거리는 우주를 연구하는 데에 가장 큰 단서가 된다. 거리를 측정하는 것은 천문학에서 가장 중요한 목표 중 하나인데, 천문학에서 사용되는 모든 천체의 연구는 거리를 통한 영점 조절부터 시작하기 때문이다. 즉, 아무리 찾아낸 천체가 많아도 각각의 거리를 알지 못하면 개개의 천체를 동등한 위치에 놓고 비교하지 못한다는 말이다. 그 이유는 단순한데, 거리가 멀면 그만큼 천체가 작고 어둡게 보이기 때문. 거리를 모르면 그 천체의 크기가 정말 작고 어두운 건지 아니면 멀리 떨어져 있기 때문에 단순히 그렇게 보이는 것인지 분간할 수가 없다!
그러나 일반인의 상상을 초월할 정도로 멀리 떨어진 천체들을 다루는 천문학에서 거리를 측정하는 것은 그리 쉬운 일이 아니다. 쉽게 생각해서 지구상에서 쓰이는 거리 측정 방법[1] 으로는 태양계 내 행성까지의 거리를 재는 것도 벅차다. 실제로 현대 천문학의 초창기에는 천체까지의 거리 측정 오차가 수백%(!) 에 달하는 경우가 빈번했으며, 심지어 해당 천체가 우리 은하 내에 있는 것인지, 아니면 수십억 광년 떨어진 천체인지조차도 논란이 있었던 경우가 많았다.
이 때문에 거리 사다리는 온갖 잡다한 도구들로 뒤섞여 있는데, 이러한 다양한 방법들이 같은 천체에 대해서 사용되면서 교차 검증이 이루어져 서로를 상호 보완해주는 것이 천문학에서 거리 측정의 기본 골자이다. 즉, 거리 사다리에 새로운 거리측정방법을 도입하려면 우선 비슷한 대역에 있는 다른 방법들과 대조해보아 잘 맞는지 시험해보아야 한다.
과거 천문학자들이 이러한 방법을 무수히 반복하여 축적된 데이터를 기반으로 하기 때문에 현대 천문학에서 수십억 광년 떨어진 은하까지의 거리를 잴 수 있게 되는 것이다.
2. 주요 방법
거리 사다리를 이루는 요소들 중 많이 사용되고 오차가 적은 것으로 판명된 방법들을 서술한다.
- 연주시차 (~100pc)
- 운동 성단을 이용한 방법
- 광학적 효과를 이용한 방법
- 표준 광원(Standard Candle)을 이용한 측정 방법.
- 나선은하와 타원은하를 이용한 측정 방법.
에드윈 허블이 발견한 허블 법칙을 이용한 거리 측정 방법. 멀리 떨어진 은하는 그만큼 빠른 속도로 멀어지고 있다는 사실에 기반한다. 적용 방법은 간단하다. 단순히 적색편이로 측정한 은하의 후퇴 속도에 허블 상수를 곱하면 거리가 된다. 현재 가장 널리 사용되는 허블 상수는 약 72km/s/Mpc. 우주 팽창은 거시적인 영역에서만 이루어지고 있기 때문에 허블 법칙도 어느 정도 멀리 떨어진 은하들에게만 적용이 가능하다. 안드로메다 은하처럼 가까이 있는 은하에는 사용할 수 없다. 극단적으로 멀리 떨어진 은하들(10억 광년 이상)에 적용할 수 있는 사실상 유일한 방법이다. 그런데 이 정도 먼 거리에서는 우주 팽창 속도 변화의 영향을 받기 때문에 실제 거리(빛이 여행한 거리)와 허블 법칙으로 측정한 거리 사이에 차이가 발생하게 된다. 암흑에너지[6] 도 이 차이로부터 발견된 것. 허블 법칙이 사용되는 수준이면 엄청나게 먼 거리이기 때문에 물리적인 거리가 크게 의미가 없다. 또한 허블 법칙으로 환산되는 거리는 우주모델에 따라, 허블 상수에 따라 변하기 때문에 천문학에서는 정확한 거리값보다는 적색편이(z)값을 애용하며, 적색편이≒우주의 나이≒거리가 동일하게 인식된다.
[1] 레이더, 지구상에서의 삼각시차 등[2] 혹은 각속도. 도플러효과로 인해 방출선 스펙트럼의 폭이 증가하는데, 이를 통해 측정 가능하다.[3] 아무리 천체가 많은 빛을 방출하더라도 그 천체가 아주 거대하면 밝게 보이지 않는다. 이것은 표면밝기 문제인데, 즉 점상 천체는 매우 협소한 영역에서 모든 빛이 방출되기 때문에(복사속밀도가 크기 때문에) 아주 밝게 보이지만 성운이나 은하 같은 확산(diffuse) 천체들은 광대한 영역에서 빛이 방출되어, 점상 천체라 가정하고 측정한 등급은 작을지라도 실제로 눈으로 본 등급은 더 크다. 즉 표면밝기는 거리값이 주어지지 않은 겉보기 복사속밀도라 할 수 있다. 요약하면 시직경처럼 각도 단위의 겉보기 면적(제곱도분초) 당 밝기의 개념이다.[4] 중입자 물질, 빛과 같이 관측되지 않는 암흑물질과 대비되는 관측 가능한 물질의 총칭.[5] velocity dispersion, 은하 속의 별들의 운동속도 분포에서 나타나는 분산값. 타원은하의 진화에서 은하 중심 블랙홀의 질량, 은하의 보통물질 질량, 은하의 광도, 심지어 나선은하의 팽대부와도 관계된 중요한 물리량이다.[6] 더 정확히 말하면 가속팽창의 발견이다.