측정

 


1. 크기를 잼 測定
1.1. 연구방법론에서의 측정
1.1.1. 측정 수준
1.1.1.1. 명목 수준
1.1.1.2. 서열 수준
1.1.1.3. 등간 수준
1.1.1.4. 비율 수준
1.1.2. 정리
1.1.3. 관련 문서
2. 거리를 잼 測程
3. 관련 문서


1. 크기를 잼 測定


1. 일정한 양을 기준으로 같은 종류의 다른 양의 크기를 잼. 기계나 장치를 사용하여 재기도 한다. 를 들면 무게 측정, 음주 측정, 심도 측정 등이 있다. 지리 관련해서는 측량이라고도 한다.
2. 헤아려 결정함.
척도 문서와 표본조사 문서 참조.

1.1. 연구방법론에서의 측정


'''measurement'''
연구의 대상이 되는 속성이나 개념, 구성에 대해서 일정한 규칙에 따라 정량적 수치를 부여하는 과정.
어떤 연구주제에 관련된 개념을 연구중에 다룰 수 있도록 정량화하는 것이며, 그 도구를 "측정 도구" 라 하여 대표적인 것으로는 '''척도'''(scale)가 있다. 또한 어떤 개념의 정의에 측정을 포함하는 것을 '''조작적 정의'''(operational definition)라고 부른다. 사회과학 분야에서 자주 접할 만한 측정의 사례를 들면 다음과 같다.[1]

  • 우리 회사의 A/S에 대한 고객 만족도 → 어떻게 측정할까? → "매우 만족" 에서 "매우 불만족" 까지 나누어지는 척도를 통해서 측정하자!
  • 비정규직 근로자들의 애로사항 파악 → 어떻게 측정할까? → 다양한 어려움들을 예시로 들고 가장 많은 중복응답이 나오는 항목이 무엇인지 보자!
  • 연령대에 따른 지지정당의 차이 → 어떻게 측정할까? → 응답자의 연령대를 10세 단위로 묶고, "여당 지지", "야당 지지", "중도주의", "무응답" 으로 나누어지는 척도를 통해서 측정하자!
  • 행정조직 개편에 따른 민원처리 속도의 변화 → 어떻게 측정할까? → 최초 접수에서 처리완료 순간까지의 소요시간을 시간 단위로 계산하여 비교해 보자!
  • 화재보험에 가입한 건물주의 도덕적 해이어떻게 측정할까? → 스프링클러 및 화재경보기의 정기검사를 실시해서, 관리상태를 "1(매우 좋음)" 에서 "7(매우 나쁨)" 으로 나누어지는 척도를 통해서 측정하자!
  • 흑인에 대한 인지적 수준에서의 편견의 작동 → 어떻게 측정할까? → 백인의 얼굴 샘플과 흑인의 얼굴 샘플을 가장 웃는 얼굴에서 가장 화난 얼굴까지 20장을 컴퓨터로 생성하고, "화난 얼굴" 이라고 답하는 반응이 몇 번 사진부터 나오게 되는지 각각 대조해 보자!
이런 식으로 측정할 수 있다. 보다시피 사회과학이라는 분야 자체가 이처럼 측정이 난해하고 온갖 애로사항이 꽃핀다.(…) 자연과학의 경우 일단 측정도구를 정하기만 하면 데이터분석에 대해 뒷말이 나올 여지가 별로 없는 반면,[2] 측정장비가 지나치게 비싸거나 기술적 한계에 의해 정확한 측정이 불가능한 경우는 있을 수 있다. 그런데 사회과학의 경우, 측정 자체는 같은 주제라고 하더라도 굉장히 다양한 방법으로 접근할 수 있으며 다양한 측정 도구들에 의해서 측정될 수 있다. 반면 측정 도구가 적절하지 못했다면 나중에 동료 연구자들에게 대차게 까인다.(…) 심한 경우 측정 도구만 바꾸어 봤는데 결과 데이터가 완전히 정반대로 나오는 일도 생길 수 있다. 그래서 나온 게 바로 삼각검증(triangulation).
사회과학 내에서도 대외적으로 잘 드러나고 관찰하기도 쉬운 분야에서는 측정이 큰 문제가 되지는 않는다. 그러나 인간 내면의 깊은 부분, 쉽게 왜곡되고 쉽게 포장되기 쉬운 부분들을 측정하는 분야는 측정이 극히 힘든 작업이 되고, 그만큼 연구방법론에서도 크게 강조된다. 실제로 심리학이 그런 경우가 많은데, 예를 들어 인지심리학의 한 실험에 참여하면 별 시덥지도 않은 이상한 과제(task)를 수행하게 되는 경우가 많다. 당시에는 이게 뭔가 싶겠지만 나중에 알고 보면 정신적 처리 과정의 어떤 미묘한 특정 단계를 확인하기 위한 맞춤형 과제. 측정이라는 것이 때때로 이렇게까지 스케일(?)이 커지게 될 수도 있는 것이다.
측정의 한 사례로, 우리나라에서 가장 "살기 좋은" 지역과 "살기 힘든" 지역을 구분하기 위해 8가지 지표를 활용하여 측정한 사례가 있다. # 여기서는 지자체 재정의존도, 1,000명 당 이혼 건수, 음주, 흡연, 비만, 자살, 스트레스 인지, 교통사고의 각 지표들이 높으면 높을수록 "살기 힘들다" 는 주관적 평가가 많아질 것이라고 가정하였다. 모두가 예상할 수 있듯이, 가장 "살기 좋은" 지역으로 도출된 지역은 다름아닌 서울시 서초구.
한편 1991년에 인류학자 앨런 피스크(A.P.Fiske)는 아래 각각의 측정의 수준들이 인류 사회의 네 가지 대인관계의 모드에 대응된다고 주장하여 학계의 주목을 받기도 하였다. "우리 편인가 아닌가" 의 관계는 명목 수준, "누가 더 지위가 높은가" 의 관계는 서열 수준, "우리가 얼마나 평등한가" 의 관계는 등간 수준, "누가 얼마나 받아야 하는가" 의 관계는 비율 수준이라는 것.

1.1.1. 측정 수준


'''measurement level'''
한국어 SPSS 환경에서는 "측도" 로 번역했다.
측정 도구를 통해 얻은 데이터의 위계적 속성을 나타내는 개념. 측정을 통해 연구자는 이제 그 데이터를 굴릴 수 있게 되었지만, 여기에도 다 종류가 있어서 어떤 것은 함부로 굴릴 수 없다. 이 개념은 물리학자이자 동시에 심리학자였던(…) 독특한 이력을 지닌 스티븐스(S.S.Stevens)라는 학자가 제안한 것인데, 심리학 분야에서는 베버의 법칙을 보완하는 "스티븐스의 멱함수 법칙" 을 제안한 인물로 유명하다.
측정 수준을 가지고 척도를 만들 때에는 유의할 점이 두 가지 있다. 첫째, '''모든 예상되는 응답이 값에 반영되어야 한다.''' 예를 들어 자회사 상품의 품질에 만족하냐는 질문에 대해서 1="매우 만족", 2="만족", 3="보통" 이렇게만 값을 배정한다면 소비자들은 제대로 불만을 표출할 길을 찾지 못하게 된다.(…) 둘째, '''각 값들 사이에는 중복되는 속성이 없어야 한다.''' 예를 들어 학생들이 좋아하는 과목을 조사하는데 1="국어", 2="수학", 3="영어", 4="도덕", 5="윤리" 이렇게 값을 배정한다면 4번 값과 5번 값이 서로 중복될 위험이 있다.
아무튼 스티븐스는 측정 수준을 이하의 4가지로 나누었다. 이 중 명목형,순서형 척도에서 나온 자료는 보통 '''질적 또는 범주형 자료'''로 불리고 구간형,비율형 척도에서 나온 자료는 '''양적 자료'''라고 불린다.

1.1.1.1. 명목 수준

'''nominal level'''
측정 대상이 되는 어떤 변인의 여러 값(value)들을 각각 그것에 대응하는 명목상의 수로 구분하는 것. 숫자를 할당하는 것은 단순히 명목상의 작업일 뿐이며 당연히 '''아무런 의미도 없다.''' 즉, 각 값들 사이에는 우열이나 대소 관계가 없고, 단지 범주(category)만이 다를 뿐이다. 인구통계학, 사회학, 인구총조사(센서스), 저널리즘 등에서 자주 쓰인다.
명목 수준에서는 '''어떠한 연산도 불가능하며, 단지 예/아니오 정도의 응답만이 가능하다.''' 또한 각 값들에 대한 분석의 경우, 단지 최빈값(mode)의 확인만이 가능하다.
이제 예를 들어 1="남성", 2="여성" 으로 구성된 성별 변인이 있다고 가정하자. 1+2=3이지만, 이 변인에서 3이라는 숫자가 어떤 의미가 있을까?[3] 아니면 1+1=2니까, 남자 둘을 합하면 여자가 나온다는(??!) 결론을 얻을 수 있을까? 남성이 1이라는 숫자로, 여성이 2라는 숫자로 배정되었으니까, 이것은 여성이 남성보다 2배만큼 더 우월하다고 간주할 수 있는 근거인가? 아니면, 여자는 항상 2등이고 남자는 항상 1등이라는 의미라고 생각해야 할까? 사실 '''아무 의미도 없는 것이다.''' 주민등록번호의 경우에도 마찬가지다. 남자는 1로 시작하고 여자는 2로 시작하지만, 조사방법론을 배워 본 사람이라면 여기에는 아무런 성 대결의 요소가 없음을 알 수 있을 것이다.
이처럼 숫자 자체가 아무런 의미가 없기 때문에, 1="여성", 2="남성" 으로 척도를 삼는 것도 얼마든지 가능하다. 아니, 더 나아가서 아예 1="여성", 2="무응답", 3="남성"(…)으로 척도를 삼을 수도 있다. 물론 이를 응용하여 1="남성", 2="여성", 3="인터섹스" 처럼 이후 번호에 추가적인 값들을 배정할 수도 있다.
명목 수준으로 측정하는 사례를 몇 가지 들면 다음과 같다. '''각각의 값들에 대해 숫자가 배정되어 있지만, 숫자 자체에 아무런 의미가 없음을 확인할 수 있다.'''
Q. 귀하의 삶에서 주관적 안녕감(subjective well-being)에 가장 큰 영향을 미치는 것은 무엇이라고 생각하십니까?
1. 사회적 성공 (사회경제적 지위의 상승)   2. 가정의 평화와 화목   3. 긍정적 대인관계   4. 지식의 탐구와 축적   5. 내면적, 영적 깨달음   6. 기타
Q. 귀하는 현재 어느 지역에 거주하고 계십니까?
1. 특별시/광역시   2. 경기도   3. 강원도   4. 충청도   5. 경상도   6. 전라도   7. 제주도   8. 해외거주
Q. 귀하의 종교는 무엇입니까?[4]
1. 개신교   2. 불교   3. 가톨릭   4. 원불교 5.기타  6. 종교 없음[5]

1.1.1.2. 서열 수준

'''ordinal level'''
측정 대상이 되는 어떤 변인의 여러 값들에 대해 일정한 기준에 따라서 상대적 순서 또는 서열을 부여하는 것. 숫자를 할당하는 것은 그 숫자 자체로서의 의미가 있다기보다는 척도 내에서의 다른 값들과의 비교 결과이다. 즉, 각 숫자들은 '''기수'''(基數)'''적이라기보다는 서수'''(序數)'''적이다.''' 경영학에서의 VOC(고객의 소리) 같은 소비자 접촉이나 여론의 흐름, 사회 이슈에 대한 찬반 등에 쓰일 수 있다.
서열 수준에서는 예/아니오에 더하여 '''더 크다/더 작다 판단이 가능하다.''' 각 값들에 대한 분석의 경우, 최빈값과 함께 중앙값(median)의 확인이 가능하다. 그러나 덧셈과 뺄셈은 할 수 없는데, 그 이유는 각각의 값들 사이의 차이가 균등하다는 보장이 없기 때문.
이제 예를 들어 보자. ○○ 교회의 교인인 응답자들에게 스스로가 생각하는 신앙심을 물어보았을 때, 1="매우 독실함", 2="독실한 편", 3="냉담한 편" 으로 값을 정했다고 하자. 여기서 각 숫자들은 작을수록 더 신앙심이 두텁고, 숫자가 커질수록 신앙심이 약하다는 것을 의미한다. 물론 정반대로 뒤집어서 1="냉담한 편", 2="독실한 편", 3="매우 독실함" 으로 설정할 수도 있지만, 흔한 방식은 아니다. 보다시피 각 값들은 '''일정하게 오름차순 혹은 내림차순을 지키고 있으며,''' 이를 마구 뒤섞어서 값을 배치할 수는 없다.
서열 수준으로 측정하는 사례를 몇 가지 들면 다음과 같다. '''각각의 값들이 크거나 작은 것이 어떤 것을 의미하는지 이해할 수 있다.'''
Q. 병영부조리 척결 설문지(병사용)에 응해 주셔서 감사합니다. 귀하의 계급은 다음 중 무엇입니까?
1. 훈련병   2. 이등병   3. 일병   4. 상병   5. 병장
Q. ○○당이 현재 추진하고 있는 성 소수자 인권법에 대한 사회적 찬반이 격렬합니다. 귀하께서는 이에 대해 어떠한 입장을 갖고 계십니까?[6]
1. 매우 찬성   2. 찬성하는 편   3. 중립   4. 반대하는 편   5. 매우 반대
Q. (국수주의 척도 문항 #5) 외산 상품과 영화, 문물들을 국내에 수입하는 것을 전면 금지해야 한다.
1. 매우 반대한다   2. 반대한다   3. 중립   4. 동의한다   5. 매우 동의한다

1.1.1.3. 등간 수준

'''interval level'''
측정 대상이 되는 어떤 변인의 여러 값들을 서열화함은 물론, 각 서열 간의 간격이 동일해지도록(=等間) 값을 부여하는 것. 각 값들에 할당된 숫자는 이제 서열적인 정보를 갖게 됨과 동시에, 같은 간격으로 배치되어 있으므로 숫자 간의 차이 역시 정보를 갖게 된다. 이 역시 경영학의 VOC에서 자주 활용되며, 시간적 정보, 물가지수[7]와 같은 몇몇 경제학 관련 지표/지수들에서 확인된다.
등간 수준에서는 예/아니오 판단, 더 크다/더 작다 판단이 가능하고, 이에 더하여 '''덧셈과 뺄셈의 연산이 가능하다.''' 각 값들에 대한 분석의 경우, 최빈값, 중앙값을 모두 계산할 수 있으며, 이에 더하여 평균(mean)의 확인이 가능하다. 그 중에서도 가능한 것은 산술 평균(arithmetic mean). 게다가 회귀분석(regression analysis)과 분산분석(ANOVA) 역시 가능해지게 된다.
가장 흔하게 언급되는 등간 수준의 사례는 바로 섭씨 온도이다. 섭씨 10도와 섭씨 20도 사이에는 10도만큼의 차이가 있고, 섭씨 20도와 섭씨 30도 사이에도 10도만큼의 차이가 존재한다. 즉, '''같은 크기의 차이가 존재한다고 할 수 있다.''' 하지만 등간 수준에서는 곱셈과 나눗셈이 불가능해서, 섭씨 30도가 섭씨 5도에 비해 6배(?)만큼 더 높다고 말할 수는 없다. 또한 등간 수준의 중요한 특징은 '''절대 영점'''(absolute zero), 즉 '''절대적인 기준점이 존재하지 않는다'''는 것이다. 섭씨 0도는 온도가 없다는 의미가 아니라, 해수면 기압에서 물이 어는 온도에 해당하기 때문이다.[8] 마찬가지로 서기력의 경우에도 0년이라는 개념은 연도 개념 자체가 없었다는 의미가 아니다. 단지 기원전과 기원후가 만나는 시점을 의미할 뿐.
등간 수준으로 측정하는 사례를 몇 가지 들면 다음과 같다. '''각각의 값들 사이에는 일정한 차이가 존재함을 확인할 수 있다.'''
저희 사이트에 가입하기 위해서는 귀하의 생년월일을 기입해야 합니다. 이하의 목록에서 귀하의 생년을 클릭하십시오.[9][10]
……

1985년생
1986년생
1987년생
1988년생
1989년생
1990년생
1991년생
1992년생
1993년생
1994년생

……
Q. 저희 "Sunny Hills" 레스토랑을 방문해 주셔서 감사합니다. 귀하께서는 저희 레스토랑에서 직원들에게 친절 서비스 교육을 하는 것이 얼마나 시급하다고 생각하십니까? 2점 간격으로 0~10점 사이의 평정을 해 주시면 감사하겠습니다. (단, 0점은 해당 교육이 전혀 중요하지 않음을 의미합니다.)
전혀 중요하지 않음                              가장 시급함
Q. 귀하는 다음의 소득 10분위 계층 중에서 어디에 해당하십니까?
1. 1분위   2. 2분위   3. 3분위   4. 4분위   5. 5분위   6. 6분위   7. 7분위   8. 8분위   9. 9분위   10. 10분위

1.1.1.4. 비율 수준

'''ratio level'''
측정 대상이 되는 어떤 변인의 여러 값들을 분류하고, 서열을 정하며, 간격을 일정하게 할 뿐만 아니라, 절대 영점을 부여하는 것. 각 값들에 할당된 숫자들은 전부 현실세계에서 의미하는 그 숫자의 바로 그 의미를 갖게 된다. 경제학, 경영학, 사회학, 심리학, 기타 여러 사회과학들에서 널리 사용되고 있다.
비율 수준에서는 예/아니오 판단, 더 크다/더 작다 판단, 덧셈과 뺄셈이 가능하고, 이에 더하여 '''곱셈과 나눗셈까지도 가능하다.''' 각 값들에 대한 분석의 경우, 최빈값, 중앙값, 산술 평균을 모두 계산할 수 있으며, 이에 더하여 기하 평균(geometric mean)과 조화 평균(harmonic mean)을 계산하는 것이 가능해진다. 연구자는 비율 수준의 척도로 얻어진 데이터에 대해서는 자유자재로 계산과 분석을 할 수 있게 된다.
가장 흔하게 언급되는 비율 수준의 사례는 바로 나이이다. 5살은 10살보다 5살이 적고, 15살은 10살보다 5살이 많다. 20살인 사람은 4살인 사람보다 다섯 배에 해당하는 시간을 보냈다. 게다가, 세는나이 0살은 즉 "태어나지 않았음" 을 의미함으로써 절대 영점의 지위를 갖는다.[11] 그 밖에도 에 대해서 이야기하거나, 특정 활동의 연수를 측정하거나, 특정 행동이나 반응의 빈도를 체크하는 등의 방식으로 활용될 수 있다.
비율 수준으로 측정하는 사례를 몇 가지 들면 다음과 같다. '''각각의 사례들에서 0이 갖는 의미가 단지 "0" 일 뿐이라는 것을 확인할 수 있다.'''
(No.1) 스트루프 과제(Stroop task)를 1회 수행하는 시행(trial)에서 1번 참가자의 관찰된 오류의 합
0회
1회
2회
3회
4회
5회 이상
 
 
 
 
 
 
Q. 우리 피트니스 클럽을 방문해 주셔서 감사합니다. 귀하께서는 과거에 피트니스 클럽을 얼마나 이용해 보셨습니까?
1. 이용한 적 없음   2. 0~6개월   3. 7~12개월   4. 1~2년   5. 2년 이상
Q. 귀하의 가구원들의 월 소득을 모두 합하면 얼마입니까?
1. 100만 원 미만   2. 100~200만 원   3. 200~300만 원   4. 300~400만 원   5. 400~500만 원   6. 500만 원 이상

1.1.2. 정리



'''연산 여부'''
'''자료분석'''
= ≠
≤ ≥
+ -
× ÷
'''정성적 데이터'''
명목 수준

 
 
 
최빈값
서열 수준


 
 
+
중앙값
'''정량적 데이터'''
등간 수준



 
+
산술 평균
비율 수준




+
기하 평균
조화 평균
해당 표는 한승준, 《조사방법의 이해와 SPSS 활용》, 2006, p.163의 표 5-1에서 일부 인용한 것이다.
심리학에서는 위의 ordinal과 interval을 나누는 것에 대한 논쟁이 있다. 바로 자신감 척도,불안도 등의 측정값이 ordinal이냐 interval이냐 하는 것. IQ검사 같은 경우는 값 사이의 간격이 일정하다는 근거가 탄탄하여 interval로 분류되지만 많은 심리검사들은 그렇지 못하다. 그래서 이런 심리검사의 측정값들을 ordinal로 봐야 하는지 interval로 봐야 하는지 논쟁이 있다.[12]
그리고 비율 측정에서 등간, 서수, 명목으로 "collapse" 하는 것은 가능하지만, 반대 방향으로는 데이터를 변형할 수 없다는 유의점이 있다. 예컨대 한 고등학교 학급의 키를 데이터로 모았는데, 비율 및 등간 측정으로는 당연히 cm 로 측정된 데이터가 모인다. 그러면 이것을 "키 번호" 로 바꾼다거나, 소위 위너와 루저를 각각 0과 1로 배정함으로써 명목화하는 것이 가능하다. 반면 어떤 관찰값이 "루저" 라고 한다면, 그것만 가지고는 그 관찰값이 아깝게 178cm 라서 그런 것인지, 155cm 밖에 안 되어서 그런 것인지의 비율 및 등간 수준에서의 차이를 알 수는 없다.

1.1.3. 관련 문서



2. 거리를 잼 測程


차나 배 따위가 지나온 거리를 잼.

3. 관련 문서



[1] 단, 이하 사례들이 항상 그 연구주제에 대한 최선의 측정이라는 의미는 아니므로 주의.[2] 예를 들어 상층 대기의 온도를 측정하려면 라디오존데를 띄우면 되고, 체온을 측정하려면 체온계 하나면 충분하다.[3] SPSS 같은 통계분석 프로그램에서 간혹 9라는 숫자가 관행적으로 배정되는 경우는 있다. 이것은 "무응답" 내지는 "누락된 데이터" 라는 뜻.[4] 여기서 "기독교" 값과 "가톨릭" 값을 함께 배정한다면 상호 배타성이 깨지게 되어 좋은 측정이라 하기 어렵다. 그러나 관행적으로 기독교는 곧 개신교라고 통하고 있기 때문에 이의제기가 잘 이루어지고 있지 않은 듯.[5] 만일 여기에 6="확고한 무신론자" 값을 하나 더 배정할 경우 이 역시 논란의 여지가 있다. 엄밀히 말하면 무신론은 '''종교가 아니기 때문에''' "종교 없음" 값에 속한다고 볼 수도 있기 때문이다.[6] 이런 질문의 경우 별도로 "판단 유보" 내지 "잘 모르겠음" 과 같은 값을 마련해 놓기도 한다.[7] 기준시점을 잡아놓고 그 값을 100으로 설정한다.[8] 물론 -273도의 절대영도 개념이 존재하기는 하는데, 이걸로 따지고 들기 시작하면 한도끝도 없이 골치아파진다.(…) 그래서 온도를 사례로 드는 것은 아주 명쾌한 예시라고까지는 할 수 없다. 그냥, '''등간 수준에서의 0이라는 값은 실제 "0" 을 의미하는 게 아니라 그 자체로서 0이 아닌 다른 의미를 내포하고 있다'''는 정도로만 이해하자.[9] 물론 이것도 윤달이니 뭐니 따지기 시작하면 한도끝도 없다.(…)[10] 재미있는 것은, 나이를 "몇 살?" 로 묻는 것과 "몇 년생?" 으로 묻는 것은 다르다는 것이다. 후자와는 달리, 전자는 아래에 설명할 비율 수준에 해당한다.[11] 짐작하겠지만 이것도 글로벌 스탠다드는 만 나이라는 사실을 언급하기 시작하는 순간부터 골치아파진다. [12] Anderson, N. H. (1961). Scales and statistics: Parametric and nonparametric. Psychological bulletin, 58(4), 305-316; Lord, F. M. (1953). On the Statistical Treatment of Football Numbers, pp750-751; Hays, W. L. (1973). Statistics for the social sciences (No. 04; HA29, H3 1973.),pp87-90; Siegel, S. (1956). Nonparametric statistics for the behavioral sciences,18-20; Stevens, S. S. (1951). Mathematics, measurement, and psychophysics. in Stevens, S. S. (1951). Handbook of experimental psychology,pp23-30