수학Ⅱ(7차)

 


1. 개요
2. 상세
2.1. 교과 내용
2.1.1. Ⅰ. 방정식과 부등식
2.1.2. Ⅱ. 함수의 극한과 연속
2.1.3. Ⅲ. 다항함수의 미분법
2.1.4. Ⅳ. 다항함수의 적분법
2.1.5. Ⅴ. 이차곡선
2.1.6. Ⅵ. 공간도형과 공간좌표
2.1.7. Ⅶ. 벡터


1. 개요


1997년 12월 30일 교육부 고시 1997-15호로 확정 발표된 제7차 교육과정 하에서의 수학Ⅰ의 내용 및 체계 따위를 다룬다. 7차 교육과정부터는 이전의 일시적 전면개정에서 수시부분개정 체제로 전환하였기 때문에 더 이상 몇 차라는 말을 사용하지 않기 때문에 7차 교육과정하의 수학 교육과정은 크게 1997년, 2007년 개정, 2011교과으로 나뉘기 때문에 관습상 그리고 편의상 각 항목을 분리하였다.
이 시기 수학Ⅱ의 주요 특징으로는 6차 교육과정 시기에 공통수학에 해당하던 복소수와 극형식, 일차변환이 수학Ⅲ로, 삼각함수와 초월함수의 미적분이 미분과 적분으로 독립하였다. 그리고 '''기하와 벡터 전 범위가 초월함수의 미적분보다 하위 단계로 분류된 유일한 교육과정'''이다. 현재 기하와 벡터의 위치를 고려하면 이질적으로 보이지만 사실 국제적인 추세를 고려하면 '''이게 맞다.''' 심지어 일본에서는 문과도 배우며[1] 일본을 비롯한 다른 동아시아 국가에서는 이 '기하' 과목 내용이 초월함수의 미적분보다 하급 난이도 취급을 받고 있다. 심지어 중국에서는 포물선, 타원, 쌍곡선이 모두 필수다.
또한 이 시기 수학Ⅱ에 수록되어 있었던 함수의 극한과 다항함수의 미적분은 이후 교육과정부터 다른 과목으로 넘어갔다가[2], 거의 10년만에 다시 수학Ⅱ로 되돌아 오기도 하였다.
서울대학교 정도만이 문과에게 수리 가형을 받아 줬다고 한다.

2. 상세



2.1. 교과 내용



2.1.1. Ⅰ. 방정식과 부등식


분수의 분모나 제곱근에 미지수가 포함된 방정식(분수방정식과 무리방정식), 삼차 이상의 부등식 등의 풀이법을 배운다. 여기서는 무연근 역시 배웠다.

2.1.2. Ⅱ. 함수의 극한과 연속


함수의 극한값이 존재하는 조건과 함수의 극한의 성질, 함수의 연속성 판별법, 연속함수의 성질, 중간값의 정리 등을 배운다. 다항함수만 다루며, 당시 초월함수의 극한과 연속은 미분과 적분에 있었다.

2.1.3. Ⅲ. 다항함수의 미분법


6차 시기에는 수학 I에서 다루었다. 미분계수와 도함수 역시 여기에서 다루었다. 현재는 이 부분이 수학II(2015)으로 넘어갔다.

2.1.4. Ⅳ. 다항함수의 적분법


6차 시기에는 수학 I에서 다루었다. 다항함수의 부정적분과 정적분을 다루었고, 구분구적법 역시 이 단원에서 다루었다. 현재는 수학II(2015)에서 다루고 있다.

2.1.5. Ⅴ. 이차곡선


아폴로니우스의 정리로 정의가 가능한 포물선, 타원, 쌍곡선의 표현식과 성질 등을 배운다. 이 당시 음함수와 매개변수 함수의 미분은 미분과 적분에 있었다.
현재는 기하로 넘어갔다.

2.1.6. Ⅵ. 공간도형과 공간좌표


직선과 평면사이의 관계와 삼수선의 정리, 이면각, 정사영, 공간좌표에서의 표현법 등을 배운다.
현재는 기하로 넘어갔다.

2.1.7. Ⅶ. 벡터


벡터의 성질과 계산법, 벡터를 이용한 직선과 평면 표현 등을 배운다. 단원 이름은 벡터지만, 엄밀히 말해서는 '도형과 벡터'내지 '기하와 벡터'로, 도형에 벡터라는 개념을 적용한 것이 불과하다. 즉 순수 학문에 가까운 단원은 아니라는 셈. 2015 개정 교육과정과 달리 평면벡터와 공간벡터를 모두 다루었다.

[1] 하다못해 문과도 삼각함수의 덧셈정리를 배운다. 일본에서 벡터는 수학B에 들어가 있는데, 이 과목이 공통이기 때문.[2] 2007 개정은 나형은 미적분과 통계 기본, 가형은 수학Ⅱ적분과 통계로 분할, 2009 개정은 미적분Ⅰ

분류