---
[math(\displaystyle \begin{aligned}
\int_{-\infty}^0\mathrm{Ei}^3(x)\,\mathrm{d}x&=\Bigl[x\,\mathrm{Ei}^3(x)\Bigr]_{-\infty}^0-\int_{-\infty}^0x\cdot3\mathrm{Ei}^2(x)\,\frac{e^x}x\,\mathrm{d}x \\
&=\left(\lim_{x\to0}x\,\mathrm{Ei}^3(x)-\lim_{x\to-\infty}x\,\mathrm{Ei}^3(x)\right)-3\int_{-\infty}^0e^x\mathrm{Ei}^2(x)\,\mathrm{d}x \\
&=(0-0)-3 \int_{-\infty}^0 e^x \!\left(-\int_{-x}^{\infty}\frac{e^{-t_1}}{t_1}\,\mathrm{d}t_1\right) \!\left(-\int_{-x}^{\infty}\frac{e^{-t_2}}{t_2}\,\mathrm{d}t_2\right) \mathrm{d}x \\
&=-3 \int_{-\infty}^0\int_{-x}^{\infty}\int_{-x}^{\infty} \frac{e^xe^{-t_1}e^{-t_2}}{t_1t_2} \,\mathrm{d}t_1\,\mathrm{d}t_2\,\mathrm{d}x\qquad\quad\mathrm{Let}: x=-z \\
&=-3 \int_{\infty}^0\int_z^{\infty}\int_z^{\infty} \frac{e^{-z}e^{-t_1}e^{-t_2}}{t_1t_2} \,\mathrm{d}t_1\,\mathrm{d}t_2(-\mathrm{d}z) \\
&\qquad\quad\mathrm{Let}: t_1=zx,\,t_2=zy\Rightarrow\mathrm{d}t_1=z\,\mathrm{d}x,\,\mathrm{d}t_2=z\,\mathrm{d}y \\
&=-3 \int_0^{\infty}\int_1^{\infty}\int_1^{\infty} \frac{e^{-z}e^{-zx}e^{-zy}}{zx\cdot zy} \,z\,\mathrm{d}x\,z\,\mathrm{d}y\,\mathrm{d}z \\
&=-3 \int_1^{\infty}\int_1^{\infty}\int_0^{\infty} \frac{e^{-z(1+x+y)}}{xy} \,\mathrm{d}z\,\mathrm{d}x\,\mathrm{d}y \\
&=-3 \int_1^{\infty}\int_1^{\infty} \left[-\frac{e^{-z(1+x+y)}}{xy(1+x+y)}\right]_{z\to0}^{z\to\infty} \mathrm{d}x\,\mathrm{d}y \\
&=-3 \int_1^{\infty}\int_1^{\infty} \left[(-0)-\left(-\frac1{xy(1+x+y)}\right)\right] \mathrm{d}x\,\mathrm{d}y \\
&=-3 \int_1^{\infty}\int_1^{\infty} \frac1{xy(1+x+y)} \,\mathrm{d}x\,\mathrm{d}y \\
&\qquad\quad 부분분수\ 분해\ 공식\ 사용: \frac1{ABC}=\frac1{B(C-A)}\!\left(\frac1A-\frac1C\right) \\
&=-3 \int_1^{\infty}\int_1^{\infty} \frac1{y(1+y)} \!\left(\frac1x-\frac1{1+x+y}\right) \mathrm{d}x\,\mathrm{d}y \\
&=-3 \int_1^{\infty} \frac1{y(1+y)} \Bigl[\ln x-\ln{(1+x+y)}\Bigr]_{x\to1}^{x\to\infty} \mathrm{d}y \\
&=-3 \int_1^{\infty} \frac1{y(1+y)} \!\left[\ln\frac x{1+x+y}\right]_{x\to1}^{x\to\infty} \mathrm{d}y \\
&=-3 \int_1^{\infty} \frac1{y(1+y)} \!\left(0-\ln\frac1{2+y}\right) \mathrm{d}y \\
&=-3 \int_1^{\infty} \frac{\ln{(2+y)}}{y(1+y)} \,\mathrm{d}y \qquad\quad \mathrm{Let}: y=\frac1u \\
&=-3 \int_1^0 \frac{\ln{(2+\frac1u)}}{\frac1u\!\left(1+\frac1u\right)} \!\left(-\frac1{u^2}\right) \mathrm{d}u \\
&=-3 \int_0^1 \frac{{\color{blue}\ln{(2u+1)}}-{\color{red}\ln u}}{u+1} \,\mathrm{d}u \qquad \cdots (1) \\
\end{aligned} )]
위의 정적분을 색깔별로 쪼개서 적분한 후 마지막에 값을 합쳐주면 된다.
[math(\displaystyle \begin{aligned}
\int_0^1 \frac{{\color{blue}\ln{(2u+1)} }}{u+1} \,\mathrm{d}u &= \int_0^1 \ln{(2u+1)}\cdot\frac2{2u+2} \,\mathrm{d}u \\
&= \Bigl[\ln{(2u+1)}\cdot\ln{(2u+2)}\Bigr]_0^1 -\int_0^1 \frac2{2u+1}\cdot\ln{(2u+2)} \,\mathrm{d}u \\
&\qquad\quad\mathrm{Let}: 1+2u=-v \\
&=(\ln3\cdot\ln4-0) -2\int_{-1}^{-3} \frac{\ln{(1-v)}}{-v} \!\left(-\frac12\,\mathrm{d}v\right) \\
&= 2\ln2\ln3 +\int_{-1}^{-3} \frac{-\ln{(1-v)}}v \,\mathrm{d}v \\
&= 2\ln2\ln3 +\int_0^{-3} \frac{-\ln{(1-v)}}v \,\mathrm{d}v -\int_0^{-1} \frac{-\ln{(1-v)}}v \,\mathrm{d}v \\
&=2\ln2\ln3+\mathrm{Li}_2(-3)-\mathrm{Li}_2(-1)\qquad\cdots(2)
\end{aligned} )]
[math(\displaystyle \begin{aligned}
\int_0^1 \frac{{\color{red}\ln u}}{u+1} \,\mathrm{d}u &= \Bigl.\ln u\ln{(u+1)}\Bigr|_0^1 -\int_0^1 \frac1u\ln{(1+u)} \,\mathrm{d}u \\
&= \left[0-\lim_{u\to0^+}\ln u\ln{(u+1)}\right] +\int_0^1 \frac{\ln{(1-(-u))}}{-u} \,\mathrm{d}u \\
&\qquad\quad \mathrm{Let}: -u=t \\
&=0 +\int_0^{-1} \frac{\ln{(1-t)}}t (-\mathrm{d}t) \\
&= \int_0^{-1} \frac{-\ln{(1-t)}}t \,\mathrm{d}t \\
&= \mathrm{Li}_2(-1)\qquad\cdots(3)
\end{aligned} )]
빨간색 적분 과정의 둘째 줄에 있는 극한값은 아래와 같이 계산되었다. 로피탈의 정리를 사용한 곳은 $$\overset{*}=$$로 나타내었다.
[math(\displaystyle \begin{aligned}
\lim_{u\to0^+} \ln u \ln{(u+1)} &= \lim_{u\to0^+} \frac{\ln u}{1/u} \frac{\ln{(u+1)}}{u} \\
&= \lim_{u\to0^+} \frac{\ln u}{1/u} \lim_{u\to0^+} \frac{\ln{(u+1)}}{u} \\
&\overset{*}= \lim_{u\to0^+} \frac{1/u}{-1/u^2} \lim_{u\to0^+} \frac{1/(u+1)}1 \\
&= -\lim_{u\to0^+} u \lim_{u\to0^+} \frac1{u+1} \\
&=-0\cdot1 \\
&=0
\end{aligned} )]
이제 $$(2)$$, $$(3)$$의 값을 $$(1)$$에 대입하고,
폴리로그함수의
성질들을 사용하여 정리하면 최종적으로 정적분 $$\displaystyle \int_{-\infty}^0\mathrm{Ei}^3(x)\,\mathrm{d}x$$의 값을 구할 수 있다.
[math(\displaystyle \begin{aligned}
\int_{-\infty}^0\mathrm{Ei}^3(x)\,\mathrm{d}x &= -3 \int_0^1 \frac{{\color{blue}\ln{(2u+1)}}-{\color{red}\ln u}}{u+1} \,\mathrm{d}u \\
&= -3\left[ ({\color{blue}2\ln2\ln3+\mathrm{Li}_2(-3)-\mathrm{Li}_2(-1)}) - {\color{red}\mathrm{Li}_2(-1)} \right] \\
&= -6\ln2\ln3 -3\,\mathrm{Li}_2(-3) +6\,\mathrm{Li}_2(-1) \\
&\qquad\quad \mathrm{Li}_2(-1)=(2^{-1}-1)\,\zeta(2)=-\frac{\pi^2}{12} \\
&\qquad\quad \mathrm{Inversion\ Formula}\,(x=-3): \mathrm{Li}_2(x)+\mathrm{Li}_2\!\left(\frac1x\right)=-\frac{\pi^2}6-\frac12\ln^2(-x) \\
&= -6\ln2\ln3 -3\!\left[-\mathrm{Li}_2\!\left(-\frac13\right) -\frac{\pi^2}6 -\frac12\ln^23\right] -\frac{\pi^2}2 \\
&= 3\,\mathrm{Li}_2\!\left(-\frac13\right) -6\ln2\ln3 +\frac32\ln^23 \\
&\qquad\quad \mathrm{Landen's\ Identity}\!\left(x=\frac43\right): \mathrm{Li}_2(1-x)+\mathrm{Li}_2\!\left(1-\frac1x\right)=-\frac12\ln^2x \\
&= 3\left[-\mathrm{Li}_2\!\left(\frac14\right) -\frac12\ln^2\!\left(\frac43\right)\right] -6\ln2\ln3 +\frac32\ln^23 \\
&= -3\,\mathrm{Li}_2\!\left(\frac14\right) -\frac32(2\ln2-\ln3)^2 -6\ln2\ln3 +\frac32\ln^23 \\
&= -3\,\mathrm{Li}_2\!\left(\frac14\right) -6\ln^22
\end{aligned} )]