GDI 엔진

 


[image]
한국어 : 직접분사식 가솔린 엔진
영어 : Gasoline Direct Injection
독일어 : Benzineinspritzung
1. 개요
2. 상세
2.1. 개발 역사
2.2. 장점
2.3. 단점
3. 논란
4. 각 회사의 GDI


1. 개요


가솔린(휘발유)을 사용하는 내연기관에서 연료 공급을 할 때 연료를 실린더에 직접 분사하는 형태. 연료 혼합 기체를 실린더에 주입하는 내연기관이 아니다.

2. 상세



2.1. 개발 역사


의외로 이론 자체는 오래된 편으로, 자동차의 중흥기인 1925년, 스위스의 엔지니어 Jonas Hasselman에 의해 실물이 제조되었다. 이는 혼합비가 매우 낮은 "희박한 혼합기"를 조성, 점화 플러그로 점화하는 방식이었다.[1] 단 이 Hesselman engine은 순수 가솔린엔진이 아닌 디젤엔진과의 혼합(시동걸 때는 가솔린으로 시동걸고 열 받으면 경유나 등유로 돌아가는 식)이었고 이후 최초로 양산형 가솔린 직분사 엔진은 독일에서는 Junkers Jumo 210G 엔진과 Daimler-Benz DB 601엔진을 시작으로 이 엔진들의 후계자들(Jumo 210G, Jumo 211, Jumo 213이나 Daimler-Benz DB 601, DB 603 , DB 605)이 가솔린 직분사식이었고 소련은 ASh-82FN(LA-5FN 이나 LA-7등에 쓰임)에서 적용되고 미국은 Wright R-3350 Duplex-Cyclone(B29의 엔진)의 후기형들이 가솔린 직분사식으로 제작되었다.
그리고 자동차에는 보쉬에서 시제차량에 1952년에 올려보고, 1955년 메르세데스-벤츠 300SL에 이용되어 최초로 직분사 엔진을 장착한 스포츠카가 되었다. 여기까지는 기계식 펌프로 작동되는 시스템이었고, 운전 제어의 어려움 등 기술적 문제 때문에 한동안 사장되었다가 요즘 흔히 보는 전자식 연료분사의 GDI는 1996년에 미쓰비시 자동차에서 일반 승용차용으로 처음 양산하고 이후 여러 회사에서 여러가지 이름으로 출시된다.
좀 특이한 경우로 2행정 엔진의 미연소 혼합기가 소기행정때 배기로 유출되는 문제를 해결할려고 직분사를 적용한 경우가 있었다. 커스텀 하이테크 모터사이클 제조사인 이탈리아의 비모타가 1997년에 만든 500V-due가 그것인데, 아쉽게도 당시 이태리의 조악한 전자 기술로는 내구성 좋은 인젝터를 만들 수 없었는지 초기생산 차량 전량이 리콜 및 환불처리 되면서 비모타 회사 자체가 망했다가 힘들게 정상화 되었다. 그 이후 2010년대 들어서 KTM을 비롯해 다양한 회사들이 2행정 엔진에 직분사를 적용했으나 어디까지나 공도 주행이 불가한 레이싱 카트나 모터크로스 경기전용 차량 등 극소수 분야에 적용되고 있는 실정이다. [2]

2.2. 장점


본래 엔진에 연료를 공급하는 가장 대표적인 방법은 기화기(카뷰레터)에서 연료와 산소를 혼합하여 가스 상태인 혼합기를 만들어 실린더에 주입하는 형식인데, 이는 연료+공기이기 때문에, 혼합이 제대로 되지 않을 경우 불완전 연소가 일어나기 쉬우며, 연비와 출력이 떨어진다.
그렇다면 '실린더에 공기를 많이 집어넣어 적은 연료를 많은 공기로 태우면 불완전 연소가 쉽게 일어나지 않을 것이다' 라는 개념에서 나온 것이 린번엔진[3]이였다. 기존의 14.7:1의 공기:연료 비율에 비해 더 희박한 22~23:1의 혼합기 비율이 가능해졌지만, 이는 여전히 혼합기를 조성하여 실린더에 주입하는 방식이었기에 한계가 있었다.
여기서 흡기행정에 공기만 집어 넣은 후, 거기에 연료를 분사하여 혼합기가 되는 형태의 엔진이 만들어지게 된다. 이를 통해 린번엔진에 비해 높은 25:1에서 높게는 40:1 이라는 혼합비로, 연료가 매우 적게 들어가게 되어 이론상 거의 완전 연소가 가능하게 되며, 연료가 분사되며 기화되면 주위의 열을 빼앗기 때문에 연소실 내의 기온이 떨어져 혼합기 충전효율이 좋아지는 장점과 함께 연료의 혼합비율 조정을 통한 연비의 향상과 출력향상이 가능하다. 또한 불완전연소에 의한 일산화탄소의 양도 획기적으로 줄어들었다. 게다가 전술되어 있듯이 연료분사시 연료에 의한 냉각효과가 있기 때문에 고온에 의한 노킹도 방지할 수 있어 압축비를 높일 수 있다. 흡기행정에 공기만 집어넣기 때문에 밸브 오버랩을 길게 해도 연료가 배기되지 않으므로 터보같은 과급기와의 궁합도 좋아 엔진 다운사이징에 널리 활용되고 있다. 또한 시동시 촉매온도를 쉽게 올릴 수 있어, 유럽 자동차 배기 가스 규정인 유로5에 대한 대응이 기존 엔진에 비해 편하다고 한다.

2.3. 단점


하지만 단점이 없는것은 아니다. 미세먼지 배출량이 유로 5 기준보다 높아(이 영상에서 GDI 엔진 자동차들의 매연이 심한 것을 확인할 수 있다.) 유로 6에서는 가솔린 직분사 엔진에 디젤 직분사인 CRDi 디젤 엔진처럼 미세먼지 필터를 의무적으로 장착한다고 한다.
게다가 연료가 적게 주입될수록 출력이 떨어지며, CRDi와 마찬가지로 인젝터 주위에 생기는 탄소화합물이 가솔린을 흡수하고 흡기밸브에 탄소 검댕이 쉽게 끼어 오래 운용할수록 출력과 연비가 점진적으로 떨어진다.[4] 1990년대 이후로 환경규제 때문에 많은 엔진들의 에어클리너 박스와 크랭크실이 연결되어 있고, 배기가스 재순환장치(EGR)가 사용되므로 실린더 하단으로 샌 혼합기/블로바이 가스/기화된 엔진오일/배기가스에 포함된 탄소 검댕 등이 흡기밸브에 달라붙는데, 기존 간접분사의 경우는 흡기밸브 앞에서 가솔린을 쏘기 때문에 흡기밸브가 연료를 직접 맞아 세척이 되지만, 직분사는 실린더에 직접 쏘므로 흡기밸브가 자가세척이 되지 않기 때문이다. 그래서 일정주기마다 스로틀 밸브와 흡기밸브, 흡기 매니폴드 등의 엔진 흡기기구 청소를 해 줘야 출력과 연비가 유지된다.[5]
시판되는 내부 청소용 연료첨가제 중에서 GDI 엔진이나 CRDi 같은 직분사 엔진의 카본 제거에 특효라고 광고하는 제품들이 간혹 있는데, 실린더 내부의 카본에 대해서는 효과가 있겠으나 직분사는 연료를 직접 실린더에 쏘며 흡기밸브에 청정작용을 하는 연료가 지나가지 않으므로, 흡기밸브에 이미 쌓인 탄소 검댕에 대해서는 당연히 효과가 없다. 처음부터 저런 제품들을 계속해서 사용한 것이 아니라면 중간에 혹해서 사용하지 말고, 그 돈으로 일정주기마다 흡기기구 청소를 하는게 낫다. 흡기관에 분사하거나 엔진오일에 첨가한 후 블로바이 가스에 섞여 고착된 탄소 검댕을 제거해 주는 제품들도 시판되고 있는데, 효과는 있으나 슬러지와 탄소 검댕이 심하게 쌓인 엔진에 사용할 경우 떨어져 나온 슬러지가 덩어리져 오일 순환을 막는 경우도 있으니 사용에 주의해야 한다.[6] 그리고 아예 블로바이 가스 관을 따로 빼내어 블로바이 가스가 흡기관으로 들어가지 않게하여 따로 보관하는 캐치탱크[7]도 시판되는데, 이런 제품을 사용하면 슬러지의 발생을 줄일 수 있다.[8] [9][10]
또 압축비가 기존의 MPI 엔진보다 높은 경우가 많기 때문에 대체로 엔진의 진동과 소음이 커진다. 그리고 인젝션의 연료 분사압이 기존의 것 보다 높은 경우가 많아 그에 따른 소음이 생기는 경우가 많다. 배기온이 일반 엔진에 비해 높기 때문에 일반적인 엔진용 촉매는 쓰지 못하고, 고온에 대응 가능한 촉매가 필요하다고 한다.
여기 사용되는 인젝터는 디젤엔진에 쓰이는것과 같은 (엔진내부의 고 압력에 견딜 수 있는) 직분사 인젝터이며, 현재의 GDI는 그 옆에 점화플러그가 들어간다. 피스톤의 형상이 일반 엔진과는 다르다. 일반적인 엔진의 피스톤 형상인 평평하거나 살짝 볼록 튀어나온 모양에 밸브홈(밸브리세스)이 파여있는데 반해, 피스톤 중앙부가 오목하게 들어가있는 특징이 있다.
차세대 기술로 아예 디젤 엔진처럼 강제로 압축착화를 일으키도록 플러그가 없는 가솔린 압축착화 엔진인 HCCI 엔진 역시 개발 중이다. 단, 가솔린 압축착화 기술을 적용한 엔진은 2020년에 마쓰다에서 SKYACTIV-X라는 이름으로 출시되었다.
그나마 현실적으로 나오고 있는 대응으로는 GDI + MPI로 엔진을 만들어 두 방식을 상황에 맞춰 쓰는 방식이 있다.[11] 저속 주행의 경우 MPI로 굴려 최대한 카본 축적을 억제하고 고속으로 넘어갈 때 GDI로 최대 출력을 뽑는 형태이다.

3. 논란


국내 제조사 차량에서 시동꺼짐 현상이 나타나는데, 원인이 이 GDI 엔진인 것으로 의심되고 있다. 엔진 특성상 열이 많이 나는데 이로 인한 열팽창 때문에 실린더에 손상이 생기는 것이다. SBS 8시 뉴스 56대의 차량을 상대로 검사했는데 56대 전부 문제가 있었다고 한다. '''불량률 100%.'''
사실 실린더 스크래치 문제는 꼭 GDI 엔진에서만 일어나는 게 아니다. 어떤 엔진에서든 일어날 수 있는 문제이지만, 국내 제조사에서 불거진 문제가 워낙 규모가 크고 유명해져서 해당 문제가 GDI 엔진의 특성처럼 인지되어 버린 것 뿐이다.[12]

4. 각 회사의 GDI


  • 현대자동차그룹 GDi(Gasoline Direct injection)[13]
  • 토요타 D-4[14]
  • 미쓰비시 GDI[15](Gasoline Direct Injection)
  • 마쓰다 DISI(Direct Injection Spark Ignition)
  • 포드 SCI(Smart Charge Injection)
  • 제너럴 모터스 SIDI(Spark Ignition Direct Injection)
  • 벤츠 CGI(Charged Gasoline Injection)
  • BMW HPI(High Precision Injection)
  • 폭스바겐 그룹 소속 브랜드들 (폭스바겐, 아우디, 세아트, 스코다) FSI(Fuel Stratified Injection)
  • 포르쉐 DFI(Direct Fuel Injection)
  • 르노 IDE(Injection Directe Essence)[16][17]
  • 알파로메오 JTS(Jet Trust Stoichiometric)
이외에도 여러 회사에서 2000년 이후로 거의 대다수의 엔진에서 이용하지만, 별도의 기술 이름을 넣지 않고 사용하는 경우가 많다.

[1] 이 엔진은 스카니아, 볼보, Tidaholms Bruk에서 이용됐다.[2] 설사 인젝터를 제대로 만들 수 있게 된 현재라 해도 GDI 채용한다고 해서 2행정 엔진이 요즘의 가혹한 환경규제를 만족하기는 힘들것이다. 오일 연소 문제를 비롯해 다른 수두룩한 문제점이 많으며, 무엇보다 2행정의 저렴한 제작원가라는 장점이 희생된다는 점이 크다.[3] Lean-Burn의 Lean은 '희박한' 이라는 뜻이다.[4] 출력/연비저하 속도가 느리므로 출력/연비저하를 체감하기는 어렵다. 차계부를 꼬박꼬박 쓰거나, 오랫동안 쌓여있던 흡기기구의 탄소를 제거하면 쉽게 알 수 있다.[5] 현재 양산되는 시스템 중 토요타 D4-S3세대 아우디 EA888 엔진의 경우 MPI용 인젝터가 별도로 설치 되어있어 흡기밸브 세척이 필요 없다. 통상적인 생각과는 달리 이 MPI용 인젝터는 흡기밸브 세척을 위해 달린 것이 아니라 배출가스 저감, 아이들 시 소음 감소 등의 목적으로 달린 것으로, 흡기밸브 세정은 부수적인 이득에 가깝다. 비용 문제로 듀얼 인젝션은 일부 제조사에서나 사용하고 있으므로 듀얼 인젝션을 사용하지 않는 것이 비판의 대상이 되기는 어렵다.[6] 엔진오일에 첨가제를 넣을 때는 첨가제와 기존 엔진오일이 어떻게 반응하여 엔진에 어떤 영향을 미칠 지는 아무도 모르니 조심해야 한다. 이 때 단순히 사용기만 참고해도 부족한데, 이는 느낌과 데이터가 동떨어져있는 경우도 많기 때문이다. 게다가 환경을 위해서 엔진오일에 요구되는 물성이 갈수록 혹독해져가고 있는 추세이므로 첨가제를 사용할 경우 엔진오일 규격을 오히려 맞추지 못할 확률도 있다. BMW 엔진의 경우 첨가제를 사용하다가 가변 밸브 타이밍 기구가 완전히 맛가는 경우도 있으며, 국산 엔진도 첨가제나 규격 외의 엔진오일을 사용하다가 촉매가 털려버리는 일이 잦다. 이 때문에 덕력이 높은 차덕후 중에는 첨가제와 소규모 기업의 엔진오일을 불신하는 사람들이 많다.[7] 오일 캐치탱크 자체 태생이 원래 깡통이긴 하지만, 시중 튜닝샾에서 판매하는 캐치탱크는 거기서 모양만 잡은 알루미늄 통이 대다수다. 문제가 있다면 브랜드라고 만들어낸 비교적 고가의 상품들도 분해해보면 미연소된 혼합기를 캐치할 어떤 흡착재 없이 다시 흡기라인으로 연결되기 되기때문에 노후로 인해 리테이너와 피스톤링 마모등으로 인해 오일을 미친듯이 뿜어내는것 들이나, 겨울철 습기와 합쳐진 오염물 정도만 탱크내부에 쌓이고 혼합기는 결국 그대로 다시 돌아가기 때문에 효과가 아주 미미하다. 더욱이 설치시 PCV밸브가 아닌 커버의 니플라인(환기)만 따서 설치하는 경우가 아주 많기에 효과를 못보는 경우가 매우 흔하다.[8] 원천적으로 미연소 혼합기를 '캐치' 하기 위해서는 반드시 바이패스 밸브(커버에 밸브가 안붙는 환기니플 쪽)와 필터링이가능한 오일 셰퍼레이터나 그에 준하는 캐치탱크를 사용해야하며 헤드에서 나오는 모든 PCV밸브와 커버니플에 장착해야 한다. 엔진헤드가 2개라면 각 헤드별로 설치를 해야한다.[9] 흡기밸브의 오염원인에는 오버랩으로 인한 역류된 배기가스도 포함되며 퇴적물이 고온으로 증발이나 연소 할 정도로 온도가 오를수도 없고, 엔진내부에서는 미연소 혼합기가 계속 방출이 된다. 카본빌드업 문제가 심각했던 아우디의 직분사 엔진들은 후에 개선된 오일 세퍼레이터를 공급했으며, 일정 기간마다 클리닝을 받으라고 권고한다. 특히 고성능인 V8 직분사엔진(BNS)을 보면알수있듯, 고부하 주행이 퇴적물제거에는 전혀 도움이 되지 않을뿐더러 특히 노후된 엔진은 내부기밀(리테이너, 연소실 내부 간극)이 떨어지므로 혼합기뿐만 아니라 많은양의 오일까지 뱉어낼수도 있으니 오염을 제거한답시고 고부하 주행을 하지않도록 한다. 또한 공학적으로도 화학공학이나 재료공학 등 기초를 조금이라도 배운 사람이라면 고온에서 카본이 연소된다는 말이 개소리임을 알 수 있다. 고온이 되면 탄소와 결합된 분자들이 떨어져 나갈 순 있어도 오히려 탄소가 다른 물질과 더 격렬히 반응한다. 실린더 내부가 녹아 흐르는 초고온이 되어도 탄소퇴적물은 연소되지 않는다. 논할 가치도 없는 유사과학.[10] 이는 GDI 엔진이 나오기 전에도 있었다. 이태리 차들이 말쎵이 많았는지 Italian Tuneup이라고...[11] 토요타현대가 현재 이 듀얼포트 엔진을 상용화하였다.[12] 보통 GDI 엔진은 고출력 세팅을 목적으로 만들어지기 때문에 문제가 발생할 가능성이 큰 것은 맞다.[13] 초기에는 미쓰비시의 GDI를 도입했으나, 이후 마지막 대소문자만 바꿔 GDi라는 명칭으로 미쓰비시의 것과 별개의 시스템을 사용하므로 따로 분류함.[14] 직분사와 포트분사를 병행사용하는 바리에이션은 뒤에 S가 붙어서 D-4S라 불리우며, 디젤은 뒤에 D가 더 붙어서 D-4D가 된다.[15] 96년 부터 양산시작.[16] essence믄 프랑스어로 휘발유란 뜻이다.[17] 르노삼성자동차에서는 GDe라는 이름을 사용중이다.

분류