고급 수학Ⅰ
1. 2015 개정 교육과정 '고급 수학Ⅰ'
1.1. 성격
수학과는 수학의 개념, 원리, 법칙을 이해하고 기능을 습득하여 주변의 여러 가지 현상을 수학적으로 관찰하고 해석하며 논리적으로 사고하고 합리적으로 문제를 해결하는 능력과 태도를 기르는 교과이다. 수학은 오랜 역사를 통해 인류 문명 발전의 원동력이 되어 왔으며, 세계화・정보화가 가속화되는 미래 사회의 구성원에게 필수적인 역량을 제공한다. 수학 학습을 통해 학생들은 수학의 규칙성과 구조의 아름다움을 음미할 수 있고, 수학의 지식과 기능을 활용하여 수학 문제뿐만 아니라 실생활과 다른 교과의 문제를 창의적으로 해결할 수 있으며, 나아가 세계 공동체의 시민으로서 갖추어야 할 합리적 의사 결정 능력과 민주적 소통 능력을 함양할 수 있다.
<고급 수학Ⅰ>은 <심화 수학Ⅰ>과 <심화 수학Ⅱ>를 학습하였거나 이들 과목에 포함된 내용을 다루는 수학 일반 선택[1] 과 진로 선택 과목[2] 을 학습한 후에 선택할 수 있는 전문 교과 과목으로, 더욱 심화된 수학을 학습하기를 원하는 과학고등학교, 과학중점고등학교, 일반고등학교 학생들이 선택할 수 있는 과목이다. <고급 수학Ⅰ>의 내용은 <심화 수학Ⅰ>과 <심화 수학Ⅱ>의 내용을 심화・발전시킨 것으로, ʻ벡터ʼ, ʻ행렬과 선형변환ʼ, ʻ복소수와 극좌표ʼ, ʻ그래프ʼ의 4개 핵심 개념 영역으로 구성된다. ʻ벡터ʼ 영역에서는 벡터, 도형의 방정식을, ʻ행렬과 선형변환ʼ 영역에서는 행렬의 연산과 행렬식, 역행렬과 연립일차방정식, 행렬과 선형변환, 행렬의 대각화를, ʻ복소수와 극좌표ʼ 영역에서는 복소수와 극형식, 극좌표와 극방정식을, ʻ그래프ʼ 영역에서는 그래프와 행렬, 평면그래프와 수형도를 다룬다.
<고급 수학Ⅰ>에서 학습한 수학의 지식과 기능은 수학 전문 교과 과목과 대학 수학 학습의 토대가 되고, 자연과학, 공학, 의학 및 이들의 응용 분야를 전공하는 데 학문적 기초가 되며, 나아가 창의적 역량을 갖춘 융합 인재로 성장할 수 있는 기반을 제공한다. 이를 위해 학생들은 <고급 수학Ⅰ>의 지식을 이해하고 기능을 습득하는 것과 더불어 문제 해결, 추론, 창의・융합, 의사소통, 정보 처리, 태도 및 실천의 6가지 수학 교과 역량을 길러야 한다.
교과 역량으로서의 문제 해결은 해결 방법을 알고 있지 않은 문제 상황에서 수학의 지식과 기능을 활용하여 해결 전략을 탐색하고 최적의 해결 방안을 선택하여 주어진 문제를 해결하는 능력이고, 추론은 수학적 사실을 추측하고 논리적으로 분석하고 정당화하며 그 과정을 반성하는 능력이다. 창의・융합은 수학의 지식과 기능을 토대로 새롭고 의미 있는 아이디어를 다양하고 풍부하게 산출하고 정교화하며, 여러 수학적 지식, 기능, 경험을 연결하거나 타 교과나 실생활의 지식, 기능, 경험을 수학과 연결・융합하여 새로운 지식, 기능, 경험을 생성하고 문제를 해결하는 능력이다. 의사소통은 수학 지식이나 아이디어, 수학적 활동의 결과, 문제 해결 과정, 신념과 태도 등을 말이나 글, 그림, 기호로 표현하고 다른 사람의 아이디어를 이해하는 능력이고, 정보 처리는 다양한 자료와 정보를 수집, 정리, 분석, 활용하고 적절한 공학적 도구나 교구를 선택, 이용하여 자료와 정보를 효과적으로 처리하는 능력이다. 끝으로, 태도 및 실천은 수학의 가치를 인식하고 자주적 수학 학습 태도와 민주 시민 의식을 갖추어 실천하는 능력이다.
수학 교과 역량 함양을 통해 학생들은 복잡하고 전문화되어 가는 미래 사회에서 사회 구성원의 역할을 성공적으로 수행할 수 있고, 개인의 잠재력과 재능을 발현할 수 있으며, 수학의 필요성과 유용성을 이해하고, 수학 학습의 즐거움을 느끼며, 수학에 대한 흥미와 자신감을 기를 수 있다.
1.2. 목표
수학의 개념, 원리, 법칙을 이해하고 기능을 습득하며 수학적으로 추론하고 의사소통하는 능력을 길러, 생활 주변과 사회 및 자연 현상을 수학적으로 이해하고 문제를 합리적이고 창의적으로 해결하며, 수학 학습자로서 바람직한 태도와 실천 능력을 기른다.
가. 사회 및 자연 현상을 수학적으로 관찰, 분석, 조직, 표현하는 경험을 통하여 벡터, 행렬과 선형변환, 복소수와 극좌표, 그래프에 관련된 개념, 원리, 법칙과 이들 사이의 관계를 이해하고 수학의 기능을 습득한다.
나. 수학적으로 추론하고 의사소통하며, 창의・융합적 사고와 정보 처리 능력을 바탕으로 사회 및 자연 현상을 수학적으로 이해하고 문제를 합리적이고 창의적으로 해결한다.
다. 수학에 대한 흥미와 자신감을 갖고 수학의 역할과 가치를 이해하며 수학 학습자로서 바람직한 태도와 실천 능력을 기른다.
1.3. 내용 체계 및 성취 기준
1.3.1. 내용 체계
1.3.2. 단원과 일치하는 대학교 교육과정
1.3.3. 성취기준
1.3.3.1. 벡터
- 크기와 방향을 가지는 벡터는 유향성분으로 표현할 수 있으며, 다양한 연산을 통해 추상적인 개념으로 확장된다. 벡터는 자연과학과 공학 등 다양한 분야에서 활용된다.
[12고수Ⅰ01-01]벡터의 뜻을 알고, 벡터의 덧셈, 뺄셈, 실수배를 할 수 있다.
[12고수Ⅰ01-02]평면과 공간에서 위치벡터의 뜻을 알고, 벡터와 좌표의 대응을 이해한다.
[12고수Ⅰ01-03]벡터의 내적과 외적의 뜻을 알고, 이를 활용할 수 있다.
도형의 방정식
[12고수Ⅰ01-04]평면에서 직선과 원의 방정식을 벡터를 이용하여 나타낼 수 있다.
[12고수Ⅰ01-05]공간에서 직선, 평면과 구의 방정식을 벡터를 이용하여 나타낼 수 있다.
[12고수Ⅰ01-06]벡터를 이용하여 공간에서 도형의 위치 관계를 이해한다.
1.3.3.1.1. 학습 요소
벡터, 시점, 종점, 벡터의 크기, 영벡터, 단위벡터, 실수배, 평면벡터, 공간벡터, 위치벡터, 벡터의 성분, 내적, 외적, 방향벡터, 법선벡터, $$\vec{AB}$$, $$\vec{a}$$, $$\left | \vec{a} \right |$$, $$\displaystyle \vec{a} \cdot \vec{b}$$, $$\displaystyle \vec{a} \times \vec{b}$$
1.3.3.2. 행렬과 선형변환
- 행렬은 연립일차방정식의 해를 구하는 데 활용되며, 대칭변환, 닮음변환, 회전변환 등의 선형변환을 이해하는 도구가 된다. 행렬을 활용하면 다양한 분야에서 정보를 단순화하여 효율적으로 처리할 수 있다.
[12고수Ⅰ02-01]행렬의 뜻을 알고 행렬의 덧셈, 뺄셈, 실수배, 곱셈을 할 수 있다.
[12고수Ⅰ02-02], 행렬의 행렬식을 계산하고 활용할 수 있다.
역행렬과 연립일차방정식
[12고수Ⅰ02-03]가우스 소거법을 이용하여 연립일차방정식을 풀 수 있다.
[12고수Ⅰ02-04]가우스 소거법을 이용하여 역행렬을 구할 수 있다.
행렬과 선형변환
[12고수Ⅰ02-05]선형변환의 뜻을 알고, 선형변환과 행렬 사이의 관계를 이해한다.
[12고수Ⅰ02-06]평면에서의 대칭변환, 닮음변환, 회전변환과 행렬 사이의 관계를 이해한다.
[12고수Ⅰ02-07]선형변환의 합성과 역변환의 뜻을 알고, 행렬을 이용하여 표현할 수 있다.
행렬의 대각화
[12고수Ⅰ02-08] 행렬의 고윳값과 고유벡터를 구할 수 있다.
[12고수Ⅰ02-09]고윳값과 고유벡터를 이용하여 행렬을 대각화할 수 있다.
1.3.3.2.1. 학습 요소
행렬, 성분, 행, 열, 정사각행렬, 영행렬, 단위행렬, 전치행렬, 대칭행렬, 역행렬, 기본행연산, 가우스 소거법, 변환, 선형변환, 대칭변환, 닮음변환, 회전변환, 역변환, 특성다항식, 고윳값, 고유벡터, 대각화, $$O$$, $$A^T$$, $$\displaystyle f:(x,y) \rightarrow (x',y')$$, $$\displaystyle f:(x,y,z) \rightarrow (x',y',z')$$
1.3.3.3. 복소수와 극좌표
- 복소수의 극형식과 극좌표를 통해 극방정식으로 주어진 곡선의 그래프를 그릴 수 있다. 또한 실수만으로 설명하기 어려운 현상들도 복소수를 이용하면 간단하고 편리하게 설명할 수 있다.
[12고수Ⅰ03-01]복소평면의 뜻을 알고, 두 복소수 사이의 거리를 구할 수 있다.
[12고수Ⅰ03-02]복소수의 극형식의 뜻을 알고, 이를 이용하여 여러 가지 문제를 해결할 수 있다.
[12고수Ⅰ03-03]드 무아브르 정리를 통해 복소수의 연산의 기하적 의미를 이해한다.
극좌표와 극방정식
[12고수Ⅰ03-04]직교좌표와 극좌표의 관계를 이해한다.
[12고수Ⅰ03-05]극방정식으로 주어진 곡선의 그래프를 그릴 수 있다.
[12고수Ⅰ03-06]극방정식으로 주어진 곡선의 그래프의 성질을 이해하고, 이를 활용하여 접선과 교각을 구할 수 있다.
1.3.3.3.1. 학습 요소
복소평면, 실수축, 허수축, (복소수의) 절댓값, 극형식, 편각, 드 무아브르 정리, 극평면, 극좌표, 극방정식, $$arg(z)$$, $$e^{iθ}$$
1.3.3.4. 그래프
- 그래프는 여러 가지 자연이나 사회의 복잡한 현상을 단순화시키는 유용한 도구로써 이를 활용하여 실생활 문제를 효율적으로 해결할 수 있다.
[12고수Ⅰ04-01]그래프의 뜻을 이해한다.
[12고수Ⅰ04-02]그래프의 꼭짓점의 차수의 합과 변의 개수의 관계를 설명할 수 있다.
[12고수Ⅰ04-03]그래프를 인접행렬로 나타내고, 그 성질을 이해한다.
평면그래프와 수형도
[12고수Ⅰ04-04]평면그래프의 뜻을 이해한다.
[12고수Ⅰ04-05]오일러그래프와 해밀턴그래프의 뜻을 이해한다.
[12고수Ⅰ04-06]수형도와 생성수형도의 뜻을 알고 주어진 그래프의 생성수형도를 찾을 수 있다.
1.3.3.4.1. 학습 요소
그래프, (그래프의) 꼭짓점, (그래프의) 변, (꼭짓점의) 차수, 경로, 회로, 인접행렬, 평면그래프, 오일러그래프, 해밀턴그래프, 수형도, 생성수형도
1.4. 교수・학습 및 평가의 방향
1.4.1. 가. 교수・학습 방향
1.4.1.1. (1) 교수・학습 원칙
(가) 수학과의 교수・학습은 학생이 수학과 교육과정에 제시된 목표를 달성하고 전인적으로 성장하도록 돕는 것을 목적으로 한다.
(나) 수학과의 교수・학습은 교육과정에 제시된 내용의 수준과 범위를 준수하고, 교육과정에 제시된 목표, 내용, 평가와 일관성을 가져야 한다.
(다) 문제 해결, 추론, 창의・융합, 의사소통, 정보 처리, 태도 및 실천과 같은 수학 교과 역량을 함양하기 위한 교육 환경을 조성하고, 이에 적합한 교수・학습을 운영한다.
(라) 과목별 내용의 배열 순서가 반드시 교수・학습의 순서를 의미하는 것은 아니므로, 교수・학습 계획을 수립하거나 학습 자료를 개발할 때에는 내용의 특성과 난이도, 학교 여건, 학생의 수준 등을 고려하여 내용, 순서 등을 재구성할 수 있다.
(마) 교육과정에 제시된 내용을 지도한 후 학습 결손이 있는 학생에게는 보충 학습, 우수 학생에게는 심화 학습의 기회를 추가로 제공할 수 있다.
1.4.1.2. (2) 교수・학습 방법
(가) 수학과의 수업은 학생의 능력과 수준 등을 고려하여 설명식 교수, 탐구 학습, 프로젝트 학습, 토의・토론 학습, 협력 학습, 매체 및 도구 활용 학습 등을 적절히 선택하여 적용한다.
①설명식 교수는 교사가 설명과 시연을 통해 수업을 주도하는 교수・학습 방법으로, 수업 내용을 구조화하여 체계적으로 지도하는 데 효과적이다. 이때, 교사는 학생의 적극적인 수업 참여를 유도하고, 사고를 촉진하는 발문을 적절히 활용한다.
②탐구 학습은 학생이 중심이 되어 수학 개념, 원리, 법칙을 발견하고 구성하는 교수・학습 방법으로, 학생 스스로 자료와 정보로부터 지식을 도출하거나 지식의 타당성을 확인하는 능력을 기를 수 있게 한다.
③프로젝트 학습은 특정 주제나 과제를 탐구하기 위해 계획을 수립하고 수행하여 결과물을 산출하거나 발표하는 교수・학습 방법으로, 개인별 또는 집단별로 실시할 수 있다.
④토의・토론 학습은 특정 주제에 대해 협의하거나 논의하는 교수・학습 방법으로, 의사소통이 지니는 상호 협력적인 면을 강조한다. 이를 통해 학생들이 교과 내용을 폭넓게 이해하고 논리적이고 비판적으로 추론하며 다른 사람의 의견을 비판적으로 수용하고 자신의 주장을 효과적으로 표현하는 능력을 기를 수 있게 한다.
⑤협력 학습은 모둠 내의 상호작용, 의사소통, 참여를 통해 공동의 학습 목표에 도달하도록 하는 교수・학습 방법으로, 다른 사람을 존중하고 배려하며 모둠 내의 역할을 이해하고 책임감을 기를 수 있게 한다.
⑥매체 및 도구 활용 학습은 학생의 수준과 학습 내용에 적합한 매체와 도구를 활용하여 흥미를 유발하고 학습의 효율성과 다양성을 도모하는 교수・학습 방법으로, 시청각 자료, 멀티미디어나 인터넷 등의 컴퓨터 활용 매체와 교구, 계산기, 교육용 소프트웨어 등의 도구를 이용한다.
(나) 문제 해결 능력을 함양하기 위한 교수・학습에서는 다음 사항을 강조한다. ②탐구 학습은 학생이 중심이 되어 수학 개념, 원리, 법칙을 발견하고 구성하는 교수・학습 방법으로, 학생 스스로 자료와 정보로부터 지식을 도출하거나 지식의 타당성을 확인하는 능력을 기를 수 있게 한다.
③프로젝트 학습은 특정 주제나 과제를 탐구하기 위해 계획을 수립하고 수행하여 결과물을 산출하거나 발표하는 교수・학습 방법으로, 개인별 또는 집단별로 실시할 수 있다.
④토의・토론 학습은 특정 주제에 대해 협의하거나 논의하는 교수・학습 방법으로, 의사소통이 지니는 상호 협력적인 면을 강조한다. 이를 통해 학생들이 교과 내용을 폭넓게 이해하고 논리적이고 비판적으로 추론하며 다른 사람의 의견을 비판적으로 수용하고 자신의 주장을 효과적으로 표현하는 능력을 기를 수 있게 한다.
⑤협력 학습은 모둠 내의 상호작용, 의사소통, 참여를 통해 공동의 학습 목표에 도달하도록 하는 교수・학습 방법으로, 다른 사람을 존중하고 배려하며 모둠 내의 역할을 이해하고 책임감을 기를 수 있게 한다.
⑥매체 및 도구 활용 학습은 학생의 수준과 학습 내용에 적합한 매체와 도구를 활용하여 흥미를 유발하고 학습의 효율성과 다양성을 도모하는 교수・학습 방법으로, 시청각 자료, 멀티미디어나 인터넷 등의 컴퓨터 활용 매체와 교구, 계산기, 교육용 소프트웨어 등의 도구를 이용한다.
①문제를 해결할 때에는 문제를 이해하고 해결 전략을 탐색하며 해결 과정을 실행하고 검증 및 반성하는 단계를 거치도록 한다.
②협력적 문제 해결 과제에서는 균형 있는 책임 분담과 상호작용을 통해 동료들과 협력하여 문제를 해결하게 한다.
③수학적 모델링 능력을 신장하기 위해 생활 주변이나 사회 및 자연 현상 등 다양한 맥락에서 파악된 문제를 해결하면서 수학적 개념, 원리, 법칙을 탐구하고 이를 일반화하게 한다.
④문제 해결력을 높이기 위해 주어진 문제를 변형하거나 새로운 문제를 만들어 해결하고 그 과정을 검증하는 문제 만들기 활동을 장려한다.
(다) 추론 능력을 함양하기 위한 교수・학습에서는 다음 사항을 강조한다. ②협력적 문제 해결 과제에서는 균형 있는 책임 분담과 상호작용을 통해 동료들과 협력하여 문제를 해결하게 한다.
③수학적 모델링 능력을 신장하기 위해 생활 주변이나 사회 및 자연 현상 등 다양한 맥락에서 파악된 문제를 해결하면서 수학적 개념, 원리, 법칙을 탐구하고 이를 일반화하게 한다.
④문제 해결력을 높이기 위해 주어진 문제를 변형하거나 새로운 문제를 만들어 해결하고 그 과정을 검증하는 문제 만들기 활동을 장려한다.
①관찰과 탐구 상황에서 귀납, 유추 등의 개연적 추론을 사용하여 학생 스스로 수학적 사실을 추측하고 적절한 근거에 기초하여 이를 정당화할 수 있게 한다.
②수학의 개념, 원리, 법칙을 도출하는 과정과 수학적 절차를 논리적으로 수행하게 한다.
③추론 과정이 옳은지 비판적으로 평가하고 반성하도록 한다.
(라) 창의・융합 능력을 함양하기 위한 교수・학습에서는 다음 사항을 강조한다. ②수학의 개념, 원리, 법칙을 도출하는 과정과 수학적 절차를 논리적으로 수행하게 한다.
③추론 과정이 옳은지 비판적으로 평가하고 반성하도록 한다.
①새롭고 의미 있는 아이디어를 다양하고 풍부하게 산출할 수 있는 수학적 과제를 제공하여 학생의 창의적 사고를 촉진시킨다.
②하나의 문제를 여러 가지 방법으로 해결하게 하고, 해결 방법을 비교하여 더 효율적인 방법을 찾거나 정교화하게 한다.
③여러 수학적 지식, 기능, 경험을 연결하거나 수학과 타 교과나 실생활의 지식, 기능, 경험을 연결・융합하여 새로운 지식, 기능, 경험을 생성하고 문제를 해결하게 한다.
(마) 의사소통 능력을 함양하기 위한 교수・학습에서는 다음 사항을 강조한다. ②하나의 문제를 여러 가지 방법으로 해결하게 하고, 해결 방법을 비교하여 더 효율적인 방법을 찾거나 정교화하게 한다.
③여러 수학적 지식, 기능, 경험을 연결하거나 수학과 타 교과나 실생활의 지식, 기능, 경험을 연결・융합하여 새로운 지식, 기능, 경험을 생성하고 문제를 해결하게 한다.
①수학 용어, 기호, 표, 그래프 등의 수학적 표현을 이해하고 정확하게 사용하며, 수학적 표현을 만들거나 변환하는 활동을 하게 한다.
②수학적 아이디어 또는 수학 학습 과정과 결과를 말, 글, 그림, 기호, 표, 그래프 등을 사용하여 다른 사람과 효율적으로 의사소통할 수 있게 한다.
③다양한 관점을 존중하면서 다른 사람의 생각을 이해하고 수학적 아이디어를 표현하며 토론하게 한다.
(바) 정보 처리 능력을 함양하기 위한 교수・학습에서는 다음 사항을 강조한다. ②수학적 아이디어 또는 수학 학습 과정과 결과를 말, 글, 그림, 기호, 표, 그래프 등을 사용하여 다른 사람과 효율적으로 의사소통할 수 있게 한다.
③다양한 관점을 존중하면서 다른 사람의 생각을 이해하고 수학적 아이디어를 표현하며 토론하게 한다.
①실생활 및 수학적 문제 상황에서 적절한 자료를 탐색하여 수집하고, 목적에 맞게 정리, 분석, 평가하며, 분석한 정보를 문제 상황에 적합하게 활용할 수 있게 한다.
②교수・학습 과정에서 적절한 교구를 활용한 조작 및 탐구 활동을 통해 수학의 개념과 원리를 이해하도록 한다.
③계산 능력 배양을 목표로 하지 않는 교수・학습 상황에서의 복잡한 계산 수행, 수학의 개념, 원리, 법칙의 이해, 문제 해결력 향상 등을 위하여 계산기, 컴퓨터, 교육용 소프트웨어 등의 공학적 도구를 이용할 수 있게 한다.
(사) 태도 및 실천 능력을 함양하기 위한 교수・학습에서는 다음 사항을 강조한다. ②교수・학습 과정에서 적절한 교구를 활용한 조작 및 탐구 활동을 통해 수학의 개념과 원리를 이해하도록 한다.
③계산 능력 배양을 목표로 하지 않는 교수・학습 상황에서의 복잡한 계산 수행, 수학의 개념, 원리, 법칙의 이해, 문제 해결력 향상 등을 위하여 계산기, 컴퓨터, 교육용 소프트웨어 등의 공학적 도구를 이용할 수 있게 한다.
①수학을 생활 주변과 사회 및 자연 현상과 관련지어 지도하여 수학의 필요성과 유용성을 알게 하고, 수학의 역할과 가치를 인식할 수 있게 한다.
②수학에 대한 관심과 흥미, 호기심과 자신감을 갖고 수학 학습에 적극적으로 참여하게 하며, 끈기 있게 도전하도록 격려하고 학습 동기와 의욕을 유발한다.
③학생 스스로 목표를 설정하고 학습을 수행하며 학습 결과를 평가하는 자주적 학습 습관과 태도를 갖게 한다.
④수학적 활동을 통하여 정직하고 공정하며 책임감 있게 행동하고 어려움을 극복하기 위해 도전하는 용기 있는 태도, 타인을 배려하고 존중하며 협력하는 태도, 논리적 근거를 토대로 의견을 제시하고 합리적으로 의사 결정하는 태도를 갖고 이를 실천하게 한다.
(아) 의미 있는 발문을 하기 위하여 교수・학습에서 다음 사항에 유의한다.②수학에 대한 관심과 흥미, 호기심과 자신감을 갖고 수학 학습에 적극적으로 참여하게 하며, 끈기 있게 도전하도록 격려하고 학습 동기와 의욕을 유발한다.
③학생 스스로 목표를 설정하고 학습을 수행하며 학습 결과를 평가하는 자주적 학습 습관과 태도를 갖게 한다.
④수학적 활동을 통하여 정직하고 공정하며 책임감 있게 행동하고 어려움을 극복하기 위해 도전하는 용기 있는 태도, 타인을 배려하고 존중하며 협력하는 태도, 논리적 근거를 토대로 의견을 제시하고 합리적으로 의사 결정하는 태도를 갖고 이를 실천하게 한다.
①학생의 사고를 촉진하는 다양한 발문을 통해 상호작용이 활발한 교실 환경을 구축하고 학생의 능동적 수업 참여를 독려한다.
②학생의 인지 발달과 경험을 고려하여 발문을 하고, 발문에 대한 학생의 반응을 의미 있게 처리한다.
(자) 개인차를 고려하여 수준별 수업을 운영할 때에는 다음 사항에 유의한다. ②학생의 인지 발달과 경험을 고려하여 발문을 하고, 발문에 대한 학생의 반응을 의미 있게 처리한다.
①학습 목표를 효과적으로 달성하기 위해 교실 내에서 개인차를 고려한 소집단을 구성하거나 수준별 학급을 구성하여 교수・학습을 전개한다.
②수준별 수업을 위해 집단을 편성할 때에는 학생 개인의 능력과 수준, 적성과 희망, 교사 수급과 유휴 교실 등의 학교 상황을 고려한다.
③수준별 수업은 내용 요소를 차별화하기보다는 내용의 깊이나 접근 방법에 차이를 두어 진행한다.
②수준별 수업을 위해 집단을 편성할 때에는 학생 개인의 능력과 수준, 적성과 희망, 교사 수급과 유휴 교실 등의 학교 상황을 고려한다.
③수준별 수업은 내용 요소를 차별화하기보다는 내용의 깊이나 접근 방법에 차이를 두어 진행한다.
1.4.2. 나. 평가 방향
1.4.2.1. (1) 평가 원칙
(가) 수학과의 평가는 학생의 인지적 영역과 정의적 영역에 대한 유용한 정보를 수집・활용하여 학생의 수학 학습과 전인적 성장을 돕고 교사의 수업 방법을 개선하는 것을 목적으로 한다.
(나) 수학과의 평가는 교육과정에 제시된 내용의 수준과 범위를 준수하고, 교육과정에 제시된 목표, 내용, 교수・학습과 일관성을 가져야 한다.
(다) 수학과의 평가에서는 수학의 개념, 원리, 법칙, 기능뿐만 아니라 문제 해결, 추론, 창의・융합, 의사소통, 정보 처리, 태도 및 실천과 같은 수학 교과 역량을 균형 있게 평가한다.
(라) 수학과의 평가는 학습자의 수준을 고려하고 평가 목적과 내용에 따라 다양한 평가 방법을 활용한다.
(마) 평가 결과는 학생, 학부모, 교사 등에게 환류하여 학생의 수학 학습 개선을 도울 수 있게 한다.
1.4.2.2. (2) 평가 방법
(가) 수학과의 평가는 학습 결과 평가뿐만 아니라 과정 중심 평가도 실시하여 종합적인 수학 학습 평가가 될 수 있게 한다.
(나) 수업의 전개 국면에 따라 진단평가, 형성평가, 총괄평가를 적절히 실시하되, 지속적인 평가를 통해 다양한 정보를 수집하고 수업에 활용한다.
(다) 학생의 수학 학습 과정과 결과는 지필 평가, 프로젝트 평가, 포트폴리오 평가, 관찰 평가, 면담 평가, 구술 평가, 자기 평가, 동료 평가 등의 다양한 평가 방법을 사용하여 양적 또는 질적으로 평가한다.
①지필 평가는 수학의 개념, 원리, 법칙을 이해하고 적용하는 능력과 문제 해결, 추론, 창의・융합, 의사소통 능력 등을 평가하는 데 활용할 수 있고, 선택형, 단답형, 서・논술형 등의 다양한 문항 형태를 활용한다.
②프로젝트 평가는 수학 학습을 토대로 특정한 주제나 과제에 대해서 자료를 수집하고 분석, 종합, 해결하는 과정과 결과를 평가하는 방법으로, 문제 해결, 창의・융합, 정보 처리 능력 등을 평가할 때 활용할 수 있다.
③포트폴리오 평가는 일정 기간 동안 수학 학습 수행과 그 결과물을 평가하는 방법으로, 학생의 학습 내용 이해와 수학 교과 역량을 종합적으로 판단하고 학생의 성장에 대한 정보를 얻는 데 활용할 수 있다.
④관찰 평가, 면담 평가, 구술 평가는 학생 개인 및 소집단을 관찰, 학생과의 대화, 학생의 발표를 통해 학생의 이해 정도와 사고 방법, 수행 과정 등을 평가하는 방법으로, 의사소통, 태도 및 실천 능력 등을 평가할 때 활용할 수 있다.
⑤자기 평가는 학생 스스로 자신의 이해와 수행을 평가하는 방법으로, 문제 해결과 추론 과정의 반성, 자신의 생각 표현, 태도 및 실천 능력 등을 평가할 때 활용할 수 있다.
⑥동료 평가는 동료 학생들이 상대방을 서로 평가하는 방법으로, 협력 학습 상황에서 학생 개개인의 역할 수행 정도나 집단 활동에 기여한 정도를 평가할 때 활용할 수 있다.
(라) 평가 내용이나 방법에 따라 학생에게 계산기, 컴퓨터, 교육용 소프트웨어 등의 공학적 도구와 다양한 교구를 이용할 수 있게 한다.②프로젝트 평가는 수학 학습을 토대로 특정한 주제나 과제에 대해서 자료를 수집하고 분석, 종합, 해결하는 과정과 결과를 평가하는 방법으로, 문제 해결, 창의・융합, 정보 처리 능력 등을 평가할 때 활용할 수 있다.
③포트폴리오 평가는 일정 기간 동안 수학 학습 수행과 그 결과물을 평가하는 방법으로, 학생의 학습 내용 이해와 수학 교과 역량을 종합적으로 판단하고 학생의 성장에 대한 정보를 얻는 데 활용할 수 있다.
④관찰 평가, 면담 평가, 구술 평가는 학생 개인 및 소집단을 관찰, 학생과의 대화, 학생의 발표를 통해 학생의 이해 정도와 사고 방법, 수행 과정 등을 평가하는 방법으로, 의사소통, 태도 및 실천 능력 등을 평가할 때 활용할 수 있다.
⑤자기 평가는 학생 스스로 자신의 이해와 수행을 평가하는 방법으로, 문제 해결과 추론 과정의 반성, 자신의 생각 표현, 태도 및 실천 능력 등을 평가할 때 활용할 수 있다.
⑥동료 평가는 동료 학생들이 상대방을 서로 평가하는 방법으로, 협력 학습 상황에서 학생 개개인의 역할 수행 정도나 집단 활동에 기여한 정도를 평가할 때 활용할 수 있다.
2. 2009 개정 교육과정 '고급 수학Ⅰ'
2.1. 개요
고등학교 수학 일반 선택 과목을 이수한 뒤에 좀 더 심화내용을 공부하고자 하는 학생들을 위한 교과이다. 단원은 2007 개정 교육과정(2009~2013년 고교 입학생)이 배우던 수학Ⅰ(2007)의 '행렬과 그래프' 단원과 기하와 벡터(2007)의 '일차변환과 행렬'이 '''벡터'''와 융합된 형태로 구성되어 있다. 선형대수학의 기초 내용의 위상에 있다고 보면 된다.
일반고 학생들도 거점학교를 통해 배울 기회가 있다.
원래는 일반 선택 과목군에 있었을 것으로 추정되었고, 급하게 시안 발표 전에 심화 선택 과목으로 '''쫓아낸 것'''으로 보인다. 이 배경에 대해서는 불명이지만, 고급 수학에 전례 없던 로마 숫자가 붙어버렸고, 고급 수학I을 몰라도 고급 수학II를 할 수 있게끔 구성한 것으로 보아 교육부가 이미 구성을 만들어놓고 단원만 찢어놓았을 가능성이 높다. 수학 강사 정승제 등의 언급에 따르면, 2009 개정 교육과정(2014~2017년 고교 입학생)에 기존의 기하와 벡터(2007)에서 이차곡선 내용을 고1 과정으로 내려보내고,[3] 이 과목의 구성 중간 쯤에 '공간도형과 공간 벡터'를 넣어 '벡터와 행렬(가칭)'이라는 일반 선택 과목으로 내놓을 예정이었다. 그러나 수포자들의 응징이 두려웠는지 고급 수학으로 올려버렸다고 한다. 어쩌면 2017학년도 수능 범위에 이 과목이 반영될 '''뻔'''했을 수도 있다. 물론 가형에만 한정되겠지만은...일본도 벡터와 행렬이 아직 고등학교 정규과정었다가 최근에 빠졌다. 본고사에서도 이제 행렬 안나온다.
벡터는 대학 교육과정의 미분적분학2, 선형대수학과 관련 있으며, 행렬과 일차변환, 그래프는 선형대수학과 관련 있다.
현실은 공동교육과정이라는 이름하에 생기부에 쑤셔넣을라고 하는 과목[4] 인데다 2009이후 교육과정에서 사라졌기 때문에 2018년 기준 고2를 제외하고는 영원히 볼 수 없는 교육과정.
2.2. 내용
2.2.1. Ⅰ. 벡터와 행렬
2.2.1.1. 벡터
- 벡터 공간
- 일차독립과 일차종속
- 벡터의 외적
2.2.1.2. 행렬과 연립일차방정식
- 행렬의 뜻
- 연립일차방정식과 행렬
- 역행렬
- 행렬식
- 크래머의 공식
2.2.2. Ⅱ. 일차변환
2.2.2.1. 일차변환과 행렬
- 일차변환
- 여러 가지 일차변환
- 일차변환의 합성
- 일차변환의 역변환
2.2.2.2. 고윳값과 행렬의 거듭제곱
- 고윳값과 고유벡터
- 특성다항식
- 행렬의 대각화
- 케일리-해밀턴의 공식
2.2.3. Ⅲ. 그래프
2.2.3.1. 그래프의 뜻
- 그래프의 뜻
- 꼭짓점의 차수의 합과 변의 수 사이의 관계
- 그래프의 인접행렬
2.2.3.2. 여러 가지 그래프
- 수형도
- 생성수형도
- 오일러그래프와 해밀턴그래프
- 평면그래프
2.2.3.3. 그래프의 활용
- 채색수와 채색다항식
- 채색수의 활용
- 최단경로
[1] 수학Ⅰ, 수학Ⅱ, 미적분[2] 기하, 실용수학, 경제수학, 수학과제탐구[3] 참고로 제3, 4차 교육과정 당시에는 타원과 쌍곡선, 포물선 등은 원의 방정식에서 이어지는 고1 과정 구성이었다.[4] 교과성적란에 기록이 된다!