육팔면체
1. 개요
六八面體 / Cuboctahedron(복수는 -hedra)
한 꼭지점에 삼각형 두 개와 사각형 두 개를 배치해 만든 준정다면체. 정육면체 또는 정팔면체의 각 꼭짓점들을 각 모서리의 절반 지점까지 깎아서 만들 수도 있는데, 두 가지 정다면체의 모든 면들이 있다고 하여 '''육팔'''면체라고 불린다.
2. 정보
한 변의 길이가 $$a$$인 육팔면체가 있을 때
외접구의 반지름 = $$a$$[7]
겉넓이(surface area) = $$(6+2\sqrt{3})a^2$$
부피(volume) = $$\displaystyle\frac{5\sqrt{2}}{3}a^3$$
3. 기타
아르키메데스 다면체들 중에서도 꽤 많이 사용되는 도형이다. 신라시대의 주사위 주령구도 육팔면체와 비슷하게 생겼고 그렇게 알려져 있기도 하지만, 완전히 같은 도형은 아니다. [8]
[1] r{p,q}는 {p,q}인 정다면체의 각 꼭지점들을 각 모서리의 절반까지 깎는다는 의미이다.[2] 정사면체를 절반 깎아서 정팔면체를 만든 뒤, 다시 절반을 깎아 만든다는 의미이다.[3] 반드시 이 다면체를 지칭하지는 않으며, 해당 이름이 비슷하게 생긴 고르지 않은 다면체도 포함하는 경우[4] 반드시 이 도형과 닮거나 합동인 도형을 지칭하는 이름[5] 삼각지붕(J3)은 적도의 정육각형 선을 따라 육팔면체를 절반으로 자른 모습으로, 존슨 다면체이다.[6] 정사면체는 정삼각형 4개, 면 3개가 모인 꼭지점 4개, 모서리 6개로 이루어져있으므로, 정사면체에 대해 expand 연산자(t0,2)를 가하면 정삼각형 8개, 정사각형 6개짜리 도형인 육팔면체가 만들어진다.[7] 특이하게도 한 변의 길이와 정확히 같다. 이는 적도를 이루는 평면도형이 정육각형이기 때문으로, 한 변의 길이가 a인 정육각형의 외접원의 반지름 또한 a로 같다.[8] 주령구는 정삼각형 면 대신에 정삼각형에 거의 가까운 육각형 면을 가지고 있다. 완전히 육팔면체형으로 만들면 정삼각형 면이 나올 확률이 정사각형 면이 나올 확률보다 더 낮기 때문에, 그 확률이 같지 않다. 이 확률 차이를 보완하기 위해 그렇게 만든 것으로 보인다.