엡실론-델타 논법

 


1. 개요
2. 나오게 된 배경
3. 정의
3.1. 설명 1
3.2. 설명 2[1]
3.3. 그래프를 통한 이해
3.4. 변형
3.4.1. 좌극한과 우극한
3.4.2. 무한
3.5. 예제
4. 확장
4.1. 이변수함수에서의 정의
4.2. 복소함수의 극한
4.3. 거리 공간에서의 정의
5. 문제 풀이 팁
6. 기타


1. 개요


epsilon-delta argument
오귀스탱 루이 코시를 필두로 해서 규정한 극한의 정의.

2. 나오게 된 배경


고등학교 수학에서 문제를 풀고 있으면 왠지 꼼수로 문제를 풀어나간다는 생각을 지우기가 힘든데, 솔직히 '분모에 0이 들어가면 안 된다'는, 이때까지 깨뜨리면 안 된다고 알고 있었던 절대적인 명제를 '0은 아니지만 0에 한없이 다가간다'는 이도 저도 아닌 궤변으로 때워버렸다고 느낄 수도 있다. 제대로 된 접근 없이 고등학교 미적분을 현실에 응용했다가 들어맞지 않는 경우도 많다.
이는 현재의 고등학생들뿐만 아니라 미적분의 개념이 제시될 당시, 그러니까 함수와 극한의 개념이 모호해 무한소라는 개념으로 때워버렸을 당시에 많은 학자들에게도 마찬가지로 적용되었다. 그 당시 학자들은 혁명적인 개념이었던 미적분을 엄청나게 사용했고, 그러다가 미적분을 적용해서는 안 될 식에서조차 적용해버려 결국 이상한 값이 나와버리는, 한마디로 '''미적분 만능주의'''에 걸려버린 것이다. 그를 대체하기 위해 극한이 나왔지만 역시 빈틈이 많았던 건 매한가지였기 때문에 직관력에 있어 타의 추종을 불허했던 오일러 역시 활발히 극한을 사용했지만 당시의 한계를 넘어서지는 못하여 무한소 개념에 대해 이견을 표시하지 않은 채 극한만 그대로 사용했다.
프랑스의 수학자 피에르 드 페르마는 극대-극소 문제를 해결하기 위해서 "Adequality"라는 개념을 내놓았다. "ad-"+"equality", 즉 거의 같다는 뜻으로, 극점에서 독립변수가 아주 조금 변해도, 함수값이 거의 같다는 것이다. 구체적인 예를 들면, $$f(x)=x^4$$일 때, 극점 $$x=c$$에서, 아주 작은 변화 $$e$$에 대하여 $$f(c+e)\approx f(c)$$가 성립해서

$$\displaystyle \begin{aligned} c^{4}+4c^{3}e+6c^{2}e^{2}+4ce^{3}+e^{4} &\approx c^{4} \\ 4c^{3}e+6c^{2}e^{2}+4ce^{3}+e^{4}&\approx 0 \end{aligned} $$
가 되는데, 양변을 $$e$$로 나누면

$$\displaystyle 4c^{3}+6c^{2}e+4ce^{2}+e^{3}\approx 0 $$
이 되고, $$e$$를 0으로 취급하면 $$4c^3 =0$$이 되어 $$c=0$$으로 구할 수 있는 것이다.[2]
또한, 뉴턴은 시간에 따라 변화하는 양의 순간변화율을 구하기 위해 무한소 $$\omicron$$을 도입한 '''유율법'''을 고안하였다. 여기서 뉴턴은 '시간에 따라 변화하는 양'을 유량(Fluent, Fluxio)', 순간변화율을 '유율(Fluxion)'이라 불렀다. $$y=(t+2)(t-2)$$이라는 유량에 대하여 $$t=1$$일 때의 유율은 다음과 같이 계산할 수 있다.

$$\displaystyle \begin{aligned} \dot{y}&=\displaystyle\frac{y(1+\omicron)-y(1)}{(1+\omicron-1)} \\&=\frac{(\omicron+3)(\omicron-1)+3}{\omicron}\\&=\frac{\omicron^{2}+2\omicron}{\omicron}\\&=\omicron+2\\&=2 \end{aligned} $$
[2] 물론 미분가능한 함수의 미분계수가 [math(0)]인 점은 극점일 필요조건일 뿐이지 충분조건은 아니므로, 이게 진짜 극점인지는 확인이 필요하다.
다만, 페르마의 "Adequality"에서든지, 뉴턴의 "Fluxion"에서든지, [math(0)]은 아니지만 아주 작고, 또 가끔은 [math(0)]으로 취급해버리는 무한소라는 게 도대체 무엇인지 큰 논란이 생길 수밖에 없었다. 그렇게 미적분의 맹점이 몇 가지 발견되면서 비판이 나왔고, 특히 롤의 정리를 발견한 미셸 롤과 철학자 조지 버클리가 맹렬히 비판했는데, 특히 버클리는 '사라진 값들의 유령(the Ghosts of departed quantities)'이라는 표현까지 빌려와 신랄하게 까내렸다. 유율법의 자세한 개념과 역사에 대해서는 유율법을 참고하라.
그러다가 19세기 수학자 오귀스탱 루이 코시가 본문에서 말하는 엡실론-델타($$ \varepsilon - \delta $$) 논법을 꺼내들었다.[3] 그야말로 철저하고 빈틈없는 정의로, 이해만 하면 극한은 물론이고 다른 극한용 정리의 증명까지 쉽게 만들어 버릴 수 있었으며 더 나아가 이 새로운 정의로 인해 해석학이라는 분야가 등장했다.

3. 정의


먼저, 엡실론-델타 논법을 사용해 새로 쓴 극한의 정의를 보자. 열린 구간 $$D$$에 대하여
$$\displaystyle \begin{aligned} \displaystyle \lim_{x \rightarrow a}{ f (x ) } = L \overset{\mathsf{def}}{\iff} & \forall \varepsilon > 0,\ \exists \delta > 0,\ \forall x\in D \\& : ( 0 < | x - a | < \delta \Rightarrow | f ( x ) - L | < \varepsilon ) \end{aligned} $$
이를 쉽게 풀어쓰면 다음과 같다.
함수 $$ f ( x ) $$가 존재할 때, 임의의 양수 $$ \varepsilon $$에 대하여 적당한 양수 $$ \delta ( = \delta ( \varepsilon ) ) $$가 존재하여

$$ 0 < | x - a | < \delta \Rightarrow | f ( x ) - L | < \varepsilon $$가 성립하면, $$ x \to a $$일 때 함수 $$ f ( x ) $$의 극한값을 $$ L $$이라고 정의한다. 이때, 함수 $$ f ( x ) $$ 는 $$ x \rightarrow a $$에서 $$ L $$에 수렴한다고 하며,

$$ \displaystyle \lim_{ x \rightarrow a }{ f ( x ) } = L $$로 표현한다.

3.1. 설명 1


임의의 양수 $$\varepsilon$$에 대하여 적당한 양수 $$\delta(=\delta(\varepsilon))$$가 존재하여 $$ 0 < | x - a | < \delta \Rightarrow | f ( x ) - L | < \varepsilon$$가 될 때,
  • 임의의 양수 $$\varepsilon$$이라는 말은 $$\varepsilon$$이 어떠한 양수이든 상관없다는 뜻이다. 거기에 저 조건을 만족시키는 적절한 양수 $$\delta(=\delta(\varepsilon))$$[4]의 값을 찾을 수 있으면 된다.
  • 정의에 나오는 절댓값들이 이해를 어렵게 하는데, $$0<\left|x-a\right|<\delta$$는 $$x$$에서 $$a$$까지의 거리가 $$\delta$$보다는 작지만 [math(0)]은 아닌, 즉 $$x$$는 $$a$$가 아니라는 뜻이고, $$|f(x)-L|<\varepsilon$$는 $$f(x)$$에서 $$L$$까지의 거리가 $$\varepsilon$$보다 작다는 뜻이다.[5] 절댓값의 정의에 따라 각각 $$x\ne a\wedge a-\delta
  • $$x\to a$$로 갈 때 $$f(x)$$가 어디로 가는가[6]를 생각하면 안 된다. 거꾸로 $$|f(x)-L|$$에 대한 값을 생각하고, 그에 따라 $$\delta$$값을 찾아야 한다. 이 논법은 극한의 존재성을 논하는 것이지, 극한값을 찾는 것이 목적이 아니다.
즉, 위의 정의를 풀어 설명하면, 다음과 같다.
$$ \displaystyle \lim_{ x \rightarrow a }{ f ( x ) } = L $$이라는 것은 양수 $$\varepsilon$$이 아무리 작아도 그에 따라 적당한 양수 $$\delta(=\delta(\varepsilon))$$가 존재하여, $$x$$와 $$a$$의 거리가 $$\delta $$보다 작고 [math(0)]보다 크기만 하면 항상 $$f(x)$$와 $$L$$의 거리가 $$\varepsilon$$보다 작게 된다는 뜻이다.
더 쉽게 설명하자면,
$$ \displaystyle \lim_{ x \rightarrow a }{ f ( x ) } = L $$이라는 것은 어떠한 양수 $$\varepsilon$$이 주어지더라도 어떠한 양수 $$\delta(=\delta(\varepsilon))$$가 있어서 $$a$$와 같지 않은 $$x$$가 $$a-\delta$$와 $$a+\delta$$ 사이에 있는 값이라면 $$f(x)\in(L-\varepsilon,\,L+\varepsilon)$$라는 뜻이다.
핵심은 양수 $$\varepsilon$$에 비해 거기에 대응하는 어떠한 $$x$$값을 설정해도 그보다는 작다는 것이다.
복잡한 전제를 떼고 논리적 비약을 약간 섞어서 핵심 아이디어만을 바라보면 결국 이 논법이 이야기하는 것은, $$x$$와 $$a$$의 거리를 적절히 줄여서 (어떤 $$\delta$$), 함수의 값 $$f(x)$$를 $$L$$에 '''원하는 만큼''' (임의의 $$\varepsilon$$) 접근시킬 수 있다는 말이다. $$\varepsilon$$ 즉, 원하는 오차가 아무리 작더라도, 그 오차를 만족시킬 수 있는 델타가 '''언제나''' 존재함을 증명할 수 있다면 함수의 극한값을 $$L$$로 정의하겠다는 것이다.

3.2. 설명 2[7]


극한의 애매한 설명
$$x$$가 $$a$$에 한없이 가까울 때, $$f\left(x\right)$$의 값도 $$L$$에 한없이 가깝다.

여기에서 '한없이 가깝다'가 수학적으로는 의미가 명확하지 않으니, 잘 정의되도록 해야 한다.
  • '가깝다'와 '멀다'를 확실히 말하려면, 특정한 기준이 존재해서 그 기준보다 작으면 '가깝다', 그 기준보다 크면 '멀다'라고 할 수 있어야 한다. 그 기준을 양의 실수 $$ \varepsilon $$으로 정의하자.
  • '한없이 가까울 때'는, '$$x$$와 $$a$$의 차이가 얼마나 작은 값이든'이란 말과 같다. 즉, '어떻게 기준을 잡아도'로 해석할 수 있다.
그러면 이제 주어진 문장은 이렇게 바뀐다.
양수 $$ \varepsilon $$의 값이 무엇이든 간에, $$x$$가 $$a$$에 한없이 가까우면 $$ \left| f \left( x \right) - L \right| < \varepsilon $$이다.

'$$x$$가 $$a$$에 한없이 가까우면'도 기준 $$ \delta > 0 $$를 선언해서 위와 비슷한 방식으로 바꿀 수 있다. 하지만 $$f\left(x\right)$$가 $$L$$에 가까워지고 멀어지는 것은 $$f\left(x\right)$$의 성질과 $$ \varepsilon $$의 선택에 달려 있기 때문에, $$ \delta $$는 먼저 선언된 $$ \varepsilon $$을 무시할 수 없다. 따라서 $$ \varepsilon $$에 따른 $$ \delta $$를 적당히 잡을 수 있다면 최종 문장은 아래와 같다.
임의의 실수 $$ \varepsilon > 0 $$에 대해, 적당한 실수 $$ \delta > 0 $$가 존재해서, $$ 0 < \left| x - a \right| < \delta \Rightarrow \left| f \left( x \right) - L\right|< \varepsilon$$
이는 처음에 소개된 정의와 일치한다.
더 간단히 말하자면, 엡실론-델타의 핵심은 '''두 수의 차이를 줄이는 것'''이다. 다만 차이를 줄이고자 하는 비교 대상이 '''셀 수 없이 많은 양수[8] $$\boldsymbol \varepsilon $$'''이기 때문에 각각에 대해 다 비교를 할 수 없기에 아무거나 찍어서 되게 할 수 있는지를 확인하는 것이다.

3.3. 그래프를 통한 이해


디리클레 함수[math(y=\sin{(x^{-1})})]처럼 그래프를 그릴 수 없는 함수도 있지만, 특수한 경우에 한해서 그래프를 통해 엡실론-델타 논법을 이해해보자.
[image]
위 그림과 같이 $$\displaystyle \lim_{x \to a} f(x)=L$$인 실수 전체의 집합에서 연속인 $$y=f(x)$$의 그래프에서 적당한 양수 $$\varepsilon$$이 존재하고, 함숫값 $$f(x)$$와 $$L$$ 사이의 거리가 $$\varepsilon$$보다 작은 영역을 회색 영역으로 하고, $$x \neq a$$이면서 $$x$$와 $$a$$의 거리가 $$\delta$$보다 작은 영역을 적색 영역으로 하자. 엡실론-델타 논법의 핵심은 $$\displaystyle \lim_{x \to a} f(x)=L$$이면, 적당한 양수 $$\varepsilon$$가 얼마나 작든, 함숫값 $$f(x)$$가 회색 영역 내부에 존재하게 하는 $$x$$가 적색 영역 안에 존재하게 하는 양수 $$\delta$$가 항상 존재한다는 것이다.
이번에는 아래와 같이 $$x=a$$에서 불연속인 함수 $$y=f(x)$$를 고려하자. 이 경우 $$\displaystyle \lim_{x \to a} f(x)$$는 존재하지 않는다. 이것을 엡실론-델타 논법의 시각에서 보고자 한다.
[image]
위 그림과 같이 적당한 양수 $$\varepsilon$$이 존재하고, 함숫값 $$f(x)$$와 $$L$$ 사이의 거리가 $$\varepsilon$$보다 작은 영역을 회색 영역으로 하고, $$x \neq a$$이면서 $$x$$와 $$a$$의 거리가 $$\delta$$보다 작은 영역을 적색 영역으로 하자. 하지만 이번 경우에는 회색 영역에 함숫값 $$f(x)$$가 존재하지 않게 하는 $$x$$가 적색 영역에 포함된 것을 알 수 있다. 따라서 엡실론-델타 논법을 만족시키지 않으므로 이 경우의 극한값이 존재하지 않는 것이다.

3.4. 변형



3.4.1. 좌극한과 우극한


함수 $$f(x)$$에 대하여 $$x$$가 $$a$$보다 작은 값을 가지면서 $$a$$에 다가가는 극한을 좌극한이라 하고, 다음과 같이 표기한다.

$$\displaystyle \lim_{ x \rightarrow a^{-} }{ f ( x ) } = L $$
[3] 사실 코시 이전에 베르나르트 볼차노카를 바이어슈트라스가 먼저 이 정의를 제안했다.[4] $$\delta$$가 $$\varepsilon$$에 관한 함수라는 뜻. $$y=f(x)$$와 같은 뜻의 표기이다,[5] 엡실론과 델타 둘 다 임의의 양수이기 때문에 '거리'라는 표현을 쓸 수 있다.[6] 즉,임의의 $$\delta$$값에 대하여 적당한 $$\varepsilon(=\varepsilon(\delta))$$값을 생각하면 안 된다는 말이다.[7] 출처[8] 무한대도 셀 수 있는 무한이 있고 셀 수 없는 무한이 있다. 그중 양수는 셀 수 없는 무한에 해당한다.
좌극한은 아래와 같이 정의된다.
$$\displaystyle \lim_{ x \rightarrow a^{-} }{ f ( x ) } = L$$은 임의의 $$\varepsilon>0$$에 대하여

$$a-\delta<x<a \Rightarrow |f(x)-L|<\varepsilon$$이 성립하는 $$\delta>0$$이 존재할 때 정의된다.
함수 $$f(x)$$에 대하여 $$x$$가 $$a$$보다 큰 값을 가지면서 $$a$$에 다가가는 극한을 우극한이라 하고, 다음과 같이 표기한다.

$$\displaystyle \lim_{ x \rightarrow a^{+} }{ f ( x ) } = L $$
우극한은 아래와 같이 정의된다.
$$\displaystyle \lim_{ x \rightarrow a^{+} }{ f ( x ) } = L$$은 임의의 $$\varepsilon>0$$에 대하여

$$a<x<a+\delta \Rightarrow |f(x)-L|<\varepsilon$$이 성립하는 $$\delta>0$$이 존재할 때 정의된다.

3.4.2. 무한


$$x$$가 발산하는 경우에 대해서도 극한을 정의할 수 있다.

$$\displaystyle \lim_{ x \rightarrow \infty }{ f ( x ) } = L \quad$$ 또는 $$\quad \displaystyle \lim_{ x \rightarrow -\infty }{ f ( x ) } = L$$
라는 식으로, 간단히 $$x$$가 끝없이 커지거나 작아질 때, $$f(x)$$는 $$L$$에 접근한다는 것이다.
이 경우에는 다음과 같이 극한을 정의할 수 있다.
$$\displaystyle \lim_{ x \rightarrow \infty }{ f ( x ) } = L$$은 임의의 $$\varepsilon>0$$에 대하여 임의의 $$M>0$$이 존재해서

$$M<x \Rightarrow |f(x)-L|<\varepsilon$$이 성립하는 것으로 정의한다.
$$\displaystyle \lim_{ x \rightarrow -\infty }{ f ( x ) } = L$$은 임의의 $$\varepsilon>0$$에 대하여 임의의 $$M>0$$이 존재해서

$$-M>x \Rightarrow |f(x)-L|<\varepsilon$$이 성립하는 것으로 정의한다.
$$x \to a$$에서 극한값이 발산하는 경우에도 극한을 정의할 수 있으며,

$$\displaystyle \lim_{ x \to a }{ f ( x ) } = \infty \quad$$ 또는 $$\quad \displaystyle \lim_{ x \to a }{ f ( x ) } = -\infty$$
이 경우 아래와 같이 정의된다.
$$\displaystyle \lim_{ x \rightarrow a }{ f ( x ) } = \infty$$은 임의의 $$M>0$$에 대하여 임의의 $$\delta>0$$가 존재해서

$$0<|x-a|<\delta \Rightarrow f(x)>M$$이 성립하는 것으로 정의한다.
$$\displaystyle \lim_{ x \rightarrow a }{ f ( x ) } = -\infty$$은 임의의 $$M>0$$에 대하여 임의의 $$\delta>0$$가 존재해서

$$0<|x-a|<\delta \Rightarrow f(x)<-M$$이 성립하는 것으로 정의한다.
$$x$$가 발산하고, 그 극한값 또한 발산하는 경우에도 극한을 정의할 수 있다.

$$\displaystyle \lim_{ x \to \pm \infty }{ f ( x ) } = \pm \infty$$
이 경우 아래와 같이 정의된다.
$$\displaystyle \lim_{ x \rightarrow \infty }{ f ( x ) } = \infty$$은 임의의 $$M>0$$에 대하여

$$x>K \Rightarrow f(x)>M$$을 만족시키는 $$K>0$$이 존재할 때 정의된다.
$$\displaystyle \lim_{ x \rightarrow \infty }{ f ( x ) } = -\infty$$은 임의의 $$M>0$$에 대하여

$$x<-K \Rightarrow f(x)>M$$을 만족시키는 $$K>0$$이 존재할 때 정의된다.
$$\displaystyle \lim_{ x \rightarrow -\infty }{ f ( x ) } = \infty$$은 임의의 $$M>0$$에 대하여

$$x>K \Rightarrow f(x)<-M$$을 만족시키는 $$K>0$$이 존재할 때 정의된다.
$$\displaystyle \lim_{ x \rightarrow -\infty }{ f ( x ) } = -\infty$$은 임의의 $$M>0$$에 대하여

$$x<-K \Rightarrow f(x)<-M$$을 만족시키는 $$K>0$$이 존재할 때 정의된다.

3.5. 예제


'''[문제]'''
-
엡실론-델타 논법을 사용하여 $$\displaystyle \lim_{x\to 3}(2x-1)=5$$임을 보이시오.
[풀이 보기]
-
임의의 적당한 양수 $$\varepsilon$$이 존재하여

$$\displaystyle 0<|x-3|<\delta \Rightarrow |(2x-1)-5|<\varepsilon $$
이 되게 하는 양수 $$\delta$$를 찾자.

$$\displaystyle |(2x-1)-5|=2|x-3| $$
이고,

$$\displaystyle |x-3|<\frac{\varepsilon}{2} $$

따라서

$$\displaystyle \delta=\frac{\varepsilon}{2} $$

로 놓으면 충분하다. 따라서 임의의 양수 $$\varepsilon$$에 대하여 위의 결과를 사용하면 $$0<|x-3|<\delta$$일 때

$$\displaystyle |x-3|<\frac{\varepsilon}{2} \quad \to \quad |(2x-1)-5|<\varepsilon $$



$$\displaystyle \lim_{x\to 3}(2x-1)=5 $$

임을 알 수 있다.
이를 일반화해서 $$a\neq0$$일 때

$$ \displaystyle \delta = \frac{\epsilon}{| a |} $$

$$a=0$$일 때 $$\delta$$를 임의의 양수로 잡으면 임의의 실수 $$a$$, $$b$$에 대하여

$$ \displaystyle \lim_{x \to m} (ax+b) = am+b $$

가 성립함을 알 수 있다.


4. 확장



4.1. 이변수함수에서의 정의


다변수함수의 일종인 이변수함수의 극한은 $$ \displaystyle \lim_{( x,\, y )\rightarrow ( a,\, b )}{f ( x,\, y )} = L$$로 쓴다. 대략적인 뜻은 $$ ( x,\, y )$$가 한없이 $$ ( a,\, b )$$에 가까워질 때 $$ f ( x,\, y )$$가 한없이 $$ L $$에 가까워진다는 뜻이다.
일변수함수에서는 $$ x $$를 $$ a $$에 접근시키는 방법이 좌극한과 우극한으로 딱 두 가지밖에 없다. 하지만 평면에서 점 $$ ( x,\, y )$$가 점$$ ( a,\, b )$$로 가까워지는 방법은 무한히 많다. 굳이 직선경로를 따라가며 가까워질 필요가 없기 때문이다. 따라서 점 $$ ( x,\, y )$$가 이 무한한 수의 경로를 따라 $$ ( a,\, b )$$에 가까워지면 그러한 경로에 따른 함숫값 $$ f ( x,\, y )$$가 모두 $$ L $$에 가까워져야 한다.
위에 나와있는 직관력만 무한히 좋은 극한의 정의는 수학에서는 좋아하지 않으니 코시의 엡실론 델타로 다시 정의해야 한다. 하지만 코시의 엡실론 - 델타 논법은 일변수 함수에서의 극한이므로 그대로 적용하여 정의하기는 힘들다. 코시의 엡실론 델타를 변형시켜서 적용하면 다음과 같다.
이변수 함수 $$ f $$는 중심이 $$ (a,\, b )$$인 원의 내부에서 정의된다고 하자. 이때

$$ \displaystyle \lim_{( x,\, y )\rightarrow ( a,\, b )}{ f ( x,\, y )} = L$$이란 임의의 $$ \varepsilon > 0 $$에 대하여 적당한 $$ \delta > 0 $$가 존재하여

$$ 0 < \sqrt{( x - a )^2 + ( y - b )^2 } < \delta \Rightarrow | f ( x,\, y)- L | < \varepsilon $$이 성립한다는 의미이다. 이때 $$ L $$을 $$ ( x,\, y)= ( a,\, b )$$에서의 극한값이라 부른다.

4.2. 복소함수의 극한


복소수 자체가 이미 실수부와 허수부의 두 성분이 있기 때문에 본질적으로 이변수함수의 극한과 동일하다. 어떤 복소수 $$z_0$$로 향하는 경로는 무한히 많기 때문에 이로 인해 복소함수는 실함수와는 다른 독특한 성질을 가진다.
복소함수의 극한은 아래와 같이 정의된다.
모든 $$\varepsilon > 0$$에 대하여, 적당한 $$\delta > 0$$가 존재하여,

$$0 < \vert z - z_0 \vert < \delta \Rightarrow \vert f ( z ) - L \vert < \varepsilon$$이면,

$$\displaystyle \lim_{z \rightarrow z_{0}}{f ( z )} = L$$로 정의한다.

4.3. 거리 공간에서의 정의


두 거리 공간 $$\left(X, \, d_X\right), \left(Y,\, d_Y\right)$$이 있을 때, 함수 $$f:X\to Y$$의 극한은 다음과 같이 정의한다.($$a\in X, \,L\in Y$$)
임의의 $$ \varepsilon > 0 $$에 대해 $$ \delta > 0 $$가 존재하여 $$d_X\left(x, a\right)<\delta$$인 모든 $$x\in X$$에 대해

$$d_Y\left(f\left(x\right), L\right)<\varepsilon$$일 때

$$\displaystyle \lim_{x\to a}{f \left( x \right) } = L$$로 정의한다.
즉, 일변수함수, 다변수함수 그리고 복소함수에서의 극한의 정의는 유클리드 거리 공간에서의 극한의 정의의 특수한 경우다.

5. 문제 풀이 팁


수렴하는 극한을 보이는 경우에 적절하게 델타를 잡아서 부등식 $$|f(x)-L|<\epsilon$$을 만족시키는지 보여야 하므로, 부등식에 대한 이해가 필요하다. 다음과 같은 방법들을 사용하자.
  • 삼각부등식 $$|a+b|\leq |a|+|b|$$을 적절히 활용한다.
  • 분모와 분자가 모두 양수일 때 분모가 작을수록 분수의 값이 커진다.
  • 산술-기하평균 부등식: $$x^{2}+y^{2}\geq 2|xy|$$[9]
  • $$\delta=\text{min}\{\delta_{1},\,\delta_{2},\,\cdots\}$$ 꼴로 잡으면, $$0<|x-a|<\delta_{1}$$일 때에 성립하는 부등식도 사용할 수 있고, $$0<|x-a|<\delta_{2}$$일 때에 성립하는 부등식도 사용할 수 있고, $$\cdots$$.[10]
  • $$\delta\leq 1$$이면 임의의 자연수 $$n$$에 대하여 $$\delta^{n}\leq\delta$$. 이 부등식이 필요한 경우 $$\delta=\text{min}\{1,\,a\}$$꼴로 잡으면 된다.[11]
  • 함수가 유리식일 경우와 같이 실수 전체 중에서 정의되지 않는 부분이 생기는 경우 $$\delta$$를 좁히고 가면 편하다. 예를 들어서 $$f(x)=x^{-1}$$ 에서 $$x\to 1$$로의 극한을 생각할 때, $$\delta\geq 1$$ 이면 $$f(x)$$가 한없이 커질 수 있으므로, $$\epsilon$$이 아무리 크더라도 엡실론-델타 논법을 만족시키는 것은 불가능하다. 이런 경우 $$\delta=\text{min}\{2^{-1},\,a\}$$꼴로 잡으면 된다.
  • $$|f(x)-L|$$에서 점점 커지는 방향으로 부등식을 만들어야지, 작아지는 쪽의 부등식은 생각하면 안 된다. $$|f(x)-L|$$보다 작은 값보다 $$\epsilon$$이 커봤자 의미가 없기 때문.
  • $$|f(x)-L|$$에서 출발한 부등식의 변이 $$x$$만에 대한 함수일 때 그 극한이 [math(0)]이 아니면 부등식 자체는 옳은 부등식일지 몰라도 엡실론-델타 논법에 대한 풀이로서는 방향을 잘못 잡은 것이다. 왜냐하면, 적절하게 구한 $$\delta$$에 대해서, $$0<|x-a|<\delta$$ 일 때, $$|f(x)-L|\leq g(x)<\epsilon$$이 성립한다면, $$g(x)$$의 $$x\to a$$에 대한 극한이 [math(0)]일 때의 엡실론-델타 논법도 만족시키기 때문이다.
  • $$\delta$$는 작게 잡을수록 $$|f(x)-L|<\epsilon$$를 만족시켜야 하는 $$x$$의 범위가 줄어들어서 편하지만, 그렇다고 분수꼴로 너무 작게 잡으면 계산이 지저분해지므로, 계산이 편한 한도 내에서 작게 잡으면 된다.
그리고 한 가지 주의할 점은, 문제를 푸는 방향[12]과 실제로 풀이를 적는 방향이 거꾸로란 것. 즉, $$\delta$$를 구하는 것은 부등식을 다 구하고 난 다음 최종적으로 구할 수 있지만, 실제로 풀이를 적을 때는 $$\delta$$를 먼저 적어놓고 부등식을 써야 한다.[13]

6. 기타


  • 엄밀하게 정의, 증명하는 방식을 채택하는 대한민국 교육 과정에서도 미적분 부분에 있어서는 증명하지 않고 넘어가는 게 많은데, 해석학의 엡실론-델타 논법 때문이다. 하지만 바꿔 말하면 이거 가지고 해석학 이거저거 다 증명한다는 소리이므로 이걸 이해하는 것이 해석학에 있어서는 필수이다. 수학과나 어지간한 이공계 학생들이라면 학부 들어가자마자 기초 미적분학의 첫 단원에서 이 논법을 만나기 때문에 충분히 공부했다면 다 이해하고 있으며, 이 정의가 굉장히 도움이 된다는 것을 느낄 수 있을 것이다.
  • 이 정의가 충격으로 다가오는 이유는, 처음 보는 사람들이 언뜻 보기에 난해하기 때문이다. 정의 자체가 이해하기 어렵고, 또 왜 쓰이는지에 대한 이해도 어렵다는 것이 진입장벽이다. 그렇다고 무한소를 이용한 정의를 쓰자니 더 어렵다는 것이 문제지만.
  • 세상에서 가장 재미있는 세계사로 유명한 수학 석사 '래리 고닉'의 또 다른 저서 '세상에서 가장 재미있는 미적분(The Cartoon Guide to Calculus)'에서는 적절한 구간 내에서 어떤 $$\varepsilon$$값이라도 그에 해당하는 $$\delta$$값을 보여줄 수 있다는 식으로 설명해 놓았다.
  • 이산함수 버전으로 엡실론-N 논법이 있다.
[9] 이변수함수의 엡실론-델타 논법 같은 경우 자주 나오는 패턴.[10] 작은 구간의 원소는 당연히 그 구간을 포함하는 더 큰 구간의 원소도 되기 때문.[11] 1 대신 1보다 작은 양수도 가능[12] $$\delta$$를 구하는 것[13] 채점자는 $$\delta$$를 어떻게 구했는지는 관심이 없다. 구한 $$\delta$$가 엡실론-델타 논법을 만족시키는지만이 관심 사항이다.