상용로그

 

1. 개요
2. 기원과 대중화
3. 교과에서의 상용로그
4. 성질
4.1. log x와 log y가 지표(정수부분)가 같고, 가수(소수부분)가 다르다면
4.2. log x와 log y의 지표(정수부분)가 같지 않고, 가수(소수부분)가 같다면
4.3. log x와 log y의 지표와 가수가 서로 같다면
5. 상용로그의 응용법
6. 상용로그표
6.1. 로그표를 이용한 계산의 예
6.2. 상용로그표 계산하기


1. 개요


common logarithm. 자연수 10을 (base)으로 한 로그. $$\log_{10} x$$를 말한다.

2. 기원과 대중화


존 네이피어가 로그를 발견한 뒤 3년 후 헨리 브릭스가 밑을 10으로 하는 상용로그를 계산했다.
인류가 10진법을 기본으로 하여 발전해왔기 때문에 밑이 다른 로그들과 구분하여 사용한다. 교과과정에서는 사용상 편의를 위해 밑을 생략하고 $$\log x$$와 같이 나타낸다. 그리고 로그의 단원에서 한 부분으로 특별취급되고 있다. 만약에 인류가 역사적으로 12진법 혹은 20진법을 사용했다면 상용로그도 마찬가지로 12를 밑으로 하거나 20을 밑으로 했을 것이다.
상용로그는 우리가 10진법을 쓰기 때문에 여러 손계산을 하는데 편한 점이 있다. 예를 들어, 상용로그 없이 $$14417\times 56723$$를 계산하려고 한다면 여러번 곱하고 더해야 하기에 번거롭다. 하지만 상용로그를 사용한다면 $$a \times b = c$$ 일때 $$ \log_{10}a + \log_{10}b = \log_{10}c$$라는 점을 이용해 곱셈을 덧셈으로 바꿀 수 있다. $$\log_{10} 14417 + \log_{10} 56723$$을 상용로그를 이용해 계산 한 다음, 그 구한값이 얼마의 상용로그인지 표에서 찾으면 끝이다. 매우 계산이 편리해지므로, 이런 방법으로 여러가지 계산을 해왔다.
상용로그는 천문학에 지대한 공헌을 했는데, 괜히 우스갯 소리로 로그의 발명으로 천문학자의 수명이 배나 늘어났다고 말하는 게 아니다. 로그가 발명되기 이전에는 두 수를 모두 1 이하가 되도록 적당히 10의 음수 정수 제곱을 곱하고 ($$14417\times 56723=10^5\times10^5\times0.14417\times0.56723$$) 이렇게 만든 두 수에 해당하는 삼각비를 삼각함수표에서 찾는다. ($$0.14417=\sin 8.289^\circ,\; 0.56723=\sin 34.56^\circ$$) 다시 삼각함수의 곱을 합으로 고치는 공식으로 합으로 고쳐서 계산한 다음($$\sin 8.289^\circ\times \sin 34.56^\circ=-1/2(\cos 42.849^\circ-\cos 26.271^\circ)$$) 처음에 곱했던 10의 거듭제곱으로 나누어서 구했다. 이 방법은 단계가 더 복잡하고 삼각함수로그함수보다 근사시키기 어렵기 때문에, 정확한 값을 얻기 힘들다.
뿐만 아니라 각종 분야에도 공헌이 많았기에 옛날에는 $$\log$$라고만 써도 $$\log_{10}$$으로 쳐주는 등 여러가지 면에서 특별취급을 받았지만 결국 컴퓨터의 막강한 계산력 앞에서 무릎을 꿇고 지금은 일부 분야[1]가 아니라면 안쓰게 되어버리면서 자연스럽게 $$\log x$$라는 표기도 자연로그한테 빼앗겨버리고 상용로그는 대부분의 분야에서 $$\log_{10}$$으로 쓰이거나 아예 $$\log x/\log 10$$으로 쓰인다. [2] 덕분에 자연로그의 표기는 예전에 상용로그하고 구분하기 위해서 썼던 $$\ln x$$나 상용로그한테서 빼앗은 $$\log x$$ 둘 중 아무거나 써도 되게 되었고.

3. 교과에서의 상용로그


2007 개정 교육과정까지 '상용로그'와 '지표와 가수'가 모두 포함되어 있었으나 2009 개정 교육과정에서 '지표와 가수'가 정식적으로 삭제되었다. 일부 교과서와 참고서에서는 '지표'와 '가수'라는 표현을 각각 '정수 부분'과 '소수 부분'이라는 표현으로 바꿨지만 교육과정 내용이 아니기 때문에 본래는 다룰 수 없으며 시험 문제로조차 출제할 수가 없다. 일부 출판사에서 피드백을 받고 2015 개정 교육과정에서는 완전히 삭제되었다. → 개념원리와 같은 일부 참고서와 일부 교과서에 나오긴 하나 비중이 매우 적다. 예제 한 두 문제만 나올정도라고 생각하면 된다.
대부분 소수점 아래 4자리 수까지 표기한다. 일부 참고서는 비례부분도 나와있어서, 로그표에서는 없는 값도 비례식이나 방정식등을 이용하여 구할 수 있다. 현실적으로는 고교과정에선 상용로그표를 알려주고, 고교 과정 이후에는 계산기를 두들기면 되기 때문에 굳이 암기할 필요 없다. 2, 3, 7의 상용로그 값을 외워두면[3] 특정한 로그값을 봤을 때 대충 첫째자리 숫자가 어느정도 되나 가늠하는 용도로 써먹을 수 있...기는 하다.

4. 성질


$$\log x = n+a$$ ($$n$$는 정수, $$a$$은 $$0\leq n<1$$인 실수) 에서, $$n$$를 '''지표'''(characteristic), $$a$$을 '''가수'''(mantissa)라고 한다.[4][5]
서로 다른 상수 $$x$$, $$y$$ ($$x>0,\; y>0$$)에 대하여 $$\log x$$, $$\log y$$이라는 수가 있다고 하고, 서로 비교를 할 때,

4.1. log ''x''와 log ''y''가 지표(정수부분)가 같고, 가수(소수부분)가 다르다면


이 경우, $$x$$와 $$y$$는 같은 자리수의 숫자이다.
ex) $$\log 875 \neq \log 256$$ 이고, $$\log 10^2=2, \; \log 10^3=3$$이므로 $$2<\log 875<3,\; 2<\log 256<3$$
$$\therefore \log 875$$와 $$\log 256$$의 지표는 $$2$$로 같다.

4.2. log ''x''와 log ''y''의 지표(정수부분)가 같지 않고, 가수(소수부분)가 같다면


이 경우, $$\log x$$ 와 $$\log y$$의 자리수는 다르지만 숫자의 배열은 같다.
ex) $$\log x = 3+\log 1.909,\; \log y = 1+\log 1.909$$ 로 표현하면, 로그의 성질에 의해
$$\log x=\log 10^3 +\log 1.909=\log 1.909\cdot 10^3 =\log 1909, \\ \log y=\log 10^1 + \log 1.909=\log 1.909\cdot 10^1 =\log 19.09$$
$$\therefore x=1909,\; y=19.09$$

4.3. log ''x''와 log ''y''의 지표와 가수가 서로 같다면


$$\log x=n+a$$이고, $$\log y=m+b$$라 할때, $$n=m$$이고, $$a=b$$이면, $$n+a=m+b$$이므로, $$\log x=\log y. \; \therefore x=y$$
ex) $$\log 909 = 2 + \log 9.09, \log y=a+n$$ ($$a$$는 정수 , $$0\leq n < 1$$)에서 $$\log 909$$와 $$\log y$$의 지표와 가수가 서로 같다면,
$$2 = a, \; n = \log 9.09 \Leftrightarrow \log y = 2 + \log 9.09, \; \therefore y = 909. $$

5. 상용로그의 응용법


여기서 열거한 상용로그의 값을 잘 알고 있고, 로그의 법칙을 잘 숙지하고 있다면, 이를 이용한 합성수의 로그값을 구할 수 있음은 물론, 그 합성수를 밑으로 하는 로그의 값을 구할 수 있다. 그러나, 위의 열거한 숫자들로 이루어진 합성수 이외는 만들 수가 없다. 왜냐하면, 1~10까지의 소수는 2,3,5,7이나, 11이상의 소수는 다시 컴퓨터의 힘을 빌려서 나타내야 되고, 결정적인 것은, 서로 다른 두 소수 a,b의 곱셈과 나눗셈으로는 a,b와 또다른 소수 c를 나타낼 수 없기 때문이다.
게임 프로그래밍에서도 요긴하게 쓸 수 있는데, 대미지 숫자 표기 시 이미지 좌표 계산할 때 쓰인다. 대미지값에 상용로그를 씌워 몇 자리인지 간단하게 나오기 때문. 물론 대미지가 0이 나오는 상황[6]인 경우를 대비해서 따로 조건문을 만들어 둬야 하는 것은 기본.
눈금을 상용로그 값에 맞춰 새기면 기초적인 계산자가 된다. 상용로그의 발견 직후 기초적인 계산자도 에드먼드 건터에 의해 발명되었다.

6. 상용로그표


1이상 10미만의 상용로그 값을 미리 구해놓은 표. 2자리수 이상의 수의 로그값도 이것만 알면 로그의 성질을 이용해 구할 수 있다. 이 표가 얼마나 길고 정확하냐에 따라 계산의 오차가 줄어든다. 아래의 표는 소수점 2번째 자리까지 수의 로그값을 구할 수 있다.[7] 과거엔 더 정확한 로그표가 곧 더 정확하고 정밀한 공학/과학이었으므로 더 긴 로그값 계산이 국가 프로젝트였다. 베비지의 차분기관이 이 로그값 작성을 위해 개발되었다.
【 상용로그 표 펼치기 】
N
0
1
2
3
4
5
6
7
8
9
1.0
0.0000
0.0043
0.0086
0.0128
0.0170
0.0212
0.0253
0.0294
0.0334
0.0374
1.1
0.0414
0.0453
0.0492
0.0531
0.0569
0.0607
0.0645
0.0682
0.0719
0.0755
1.2
0.0792
0.0828
0.0864
0.0899
0.0934
0.0969
0.1004
0.1038
0.1072
0.1106
1.3
0.1139
0.1173
0.1206
0.1239
0.1271
0.1303
0.1335
0.1367
0.1399
0.1430
1.4
0.1461
0.1492
0.1523
0.1553
0.1584
0.1614
0.1644
0.1673
0.1703
0.1732
1.5
0.1761
0.1790
0.1818
0.1847
0.1875
0.1903
0.1931
0.1959
0.1987
0.2014
1.6
0.2041
0.2068
0.2095
0.2122
0.2148
0.2175
0.2201
0.2227
0.2253
0.2279
1.7
0.2304
0.2330
0.2355
0.2380
0.2405
0.2430
0.2455
0.2480
0.2504
0.2529
1.8
0.2553
0.2577
0.2601
0.2625
0.2648
0.2672
0.2695
0.2718
0.2742
0.2765
1.9
0.2788
0.2810
0.2833
0.2856
0.2878
0.2900
0.2923
0.2945
0.2967
0.2989
2.0
0.3010
0.3032
0.3054
0.3075
0.3096
0.3118
0.3139
0.3160
0.3181
0.3201
2.1
0.3222
0.3243
0.3263
0.3284
0.3304
0.3324
0.3345
0.3365
0.3385
0.3404
2.2
0.3424
0.3444
0.3464
0.3483
0.3502
0.3522
0.3541
0.3560
0.3579
0.3598
2.3
0.3617
0.3636
0.3655
0.3674
0.3692
0.3711
0.3729
0.3747
0.3766
0.3784
2.4
0.3802
0.3820
0.3838
0.3856
0.3874
0.3892
0.3909
0.3927
0.3945
0.3962
2.5
0.3979
0.3997
0.4014
0.4031
0.4048
0.4065
0.4082
0.4099
0.4116
0.4133
2.6
0.4150
0.4166
0.4183
0.4200
0.4216
0.4232
0.4249
0.4265
0.4281
0.4298
2.7
0.4314
0.4330
0.4346
0.4362
0.4378
0.4393
0.4409
0.4425
0.4440
0.4456
2.8
0.4472
0.4487
0.4502
0.4518
0.4533
0.4548
0.4564
0.4579
0.4594
0.4609
2.9
0.4624
0.4639
0.4654
0.4669
0.4683
0.4698
0.4713
0.4728
0.4742
0.4757
3.0
0.4771
0.4786
0.4800
0.4814
0.4829
0.4843
0.4857
0.4871
0.4886
0.4900
3.1
0.4914
0.4928
0.4942
0.4955
0.4969
0.4983
0.4997
0.5011
0.5024
0.5038
3.2
0.5051
0.5065
0.5079
0.5092
0.5105
0.5119
0.5132
0.5145
0.5159
0.5172
3.3
0.5185
0.5198
0.5211
0.5224
0.5237
0.5250
0.5263
0.5276
0.5289
0.5302
3.4
0.5315
0.5328
0.5340
0.5353
0.5366
0.5378
0.5391
0.5403
0.5416
0.5428
3.5
0.5441
0.5453
0.5465
0.5478
0.5490
0.5502
0.5514
0.5527
0.5539
0.5551
3.6
0.5563
0.5575
0.5587
0.5599
0.5611
0.5623
0.5635
0.5647
0.5658
0.5670
3.7
0.5682
0.5694
0.5705
0.5717
0.5729
0.5740
0.5752
0.5763
0.5775
0.5786
3.8
0.5798
0.5809
0.5821
0.5832
0.5843
0.5855
0.5866
0.5877
0.5888
0.5899
3.9
0.5911
0.5922
0.5933
0.5944
0.5955
0.5966
0.5977
0.5988
0.5999
0.6010
4.0
0.6021
0.6031
0.6042
0.6053
0.6064
0.6075
0.6085
0.6096
0.6107
0.6117
4.1
0.6128
0.6138
0.6149
0.6160
0.6170
0.6180
0.6191
0.6201
0.6212
0.6222
4.2
0.6232
0.6243
0.6253
0.6263
0.6274
0.6284
0.6294
0.6304
0.6314
0.6325
4.3
0.6335
0.6345
0.6355
0.6365
0.6375
0.6385
0.6395
0.6405
0.6415
0.6425
4.4
0.6435
0.6444
0.6454
0.6464
0.6474
0.6484
0.6493
0.6503
0.6513
0.6522
4.5
0.6532
0.6542
0.6551
0.6561
0.6571
0.6580
0.6590
0.6599
0.6609
0.6618
4.6
0.6628
0.6637
0.6646
0.6656
0.6665
0.6675
0.6684
0.6693
0.6702
0.6712
4.7
0.6721
0.6730
0.6739
0.6749
0.6758
0.6767
0.6776
0.6785
0.6794
0.6803
4.8
0.6812
0.6821
0.6830
0.6839
0.6848
0.6857
0.6866
0.6875
0.6884
0.6893
4.9
0.6902
0.6911
0.6920
0.6928
0.6937
0.6946
0.6955
0.6964
0.6972
0.6981
5.0
0.6990
0.6998
0.7007
0.7016
0.7024
0.7033
0.7042
0.7050
0.7059
0.7067
5.1
0.7076
0.7084
0.7093
0.7101
0.7110
0.7118
0.7126
0.7135
0.7143
0.7152
5.2
0.7160
0.7168
0.7177
0.7185
0.7193
0.7202
0.7210
0.7218
0.7226
0.7235
5.3
0.7243
0.7251
0.7259
0.7267
0.7275
0.7284
0.7292
0.7300
0.7308
0.7316
5.4
0.7324
0.7332
0.7340
0.7348
0.7356
0.7364
0.7372
0.7380
0.7388
0.7396
5.5
0.7404
0.7412
0.7419
0.7427
0.7435
0.7443
0.7451
0.7459
0.7466
0.7474
5.6
0.7482
0.7490
0.7497
0.7505
0.7513
0.7520
0.7528
0.7536
0.7543
0.7551
5.7
0.7559
0.7566
0.7574
0.7582
0.7589
0.7597
0.7604
0.7612
0.7619
0.7627
5.8
0.7634
0.7642
0.7649
0.7657
0.7664
0.7672
0.7679
0.7686
0.7694
0.7701
5.9
0.7709
0.7716
0.7723
0.7731
0.7738
0.7745
0.7752
0.7760
0.7767
0.7774
6.0
0.7782
0.7789
0.7796
0.7803
0.7810
0.7818
0.7825
0.7832
0.7839
0.7846
6.1
0.7853
0.7860
0.7868
0.7875
0.7882
0.7889
0.7896
0.7903
0.7910
0.7917
6.2
0.7924
0.7931
0.7938
0.7945
0.7952
0.7959
0.7966
0.7973
0.7980
0.7987
6.3
0.7993
0.8000
0.8007
0.8014
0.8021
0.8028
0.8035
0.8041
0.8048
0.8055
6.4
0.8062
0.8069
0.8075
0.8082
0.8089
0.8096
0.8102
0.8109
0.8116
0.8122
6.5
0.8129
0.8136
0.8142
0.8149
0.8156
0.8162
0.8169
0.8176
0.8182
0.8189
6.6
0.8195
0.8202
0.8209
0.8215
0.8222
0.8228
0.8235
0.8241
0.8248
0.8254
6.7
0.8261
0.8267
0.8274
0.8280
0.8287
0.8293
0.8299
0.8306
0.8312
0.8319
6.8
0.8325
0.8331
0.8338
0.8344
0.8351
0.8357
0.8363
0.8370
0.8376
0.8382
6.9
0.8388
0.8395
0.8401
0.8407
0.8414
0.8420
0.8426
0.8432
0.8439
0.8445
7.0
0.8451
0.8457
0.8463
0.8470
0.8476
0.8482
0.8488
0.8494
0.8500
0.8506
7.1
0.8513
0.8519
0.8525
0.8531
0.8537
0.8543
0.8549
0.8555
0.8561
0.8567
7.2
0.8573
0.8579
0.8585
0.8591
0.8597
0.8603
0.8609
0.8615
0.8621
0.8627
7.3
0.8633
0.8639
0.8645
0.8651
0.8657
0.8663
0.8669
0.8675
0.8681
0.8686
7.4
0.8692
0.8698
0.8704
0.8710
0.8716
0.8722
0.8727
0.8733
0.8739
0.8745
7.5
0.8751
0.8756
0.8762
0.8768
0.8774
0.8779
0.8785
0.8791
0.8797
0.8802
7.6
0.8808
0.8814
0.8820
0.8825
0.8831
0.8837
0.8842
0.8848
0.8854
0.8859
7.7
0.8865
0.8871
0.8876
0.8882
0.8887
0.8893
0.8899
0.8904
0.8910
0.8915
7.8
0.8921
0.8927
0.8932
0.8938
0.8943
0.8949
0.8954
0.8960
0.8965
0.8971
7.9
0.8976
0.8982
0.8987
0.8993
0.8998
0.9004
0.9009
0.9015
0.9020
0.9025
8.0
0.9031
0.9036
0.9042
0.9047
0.9053
0.9058
0.9063
0.9069
0.9074
0.9079
8.1
0.9085
0.9090
0.9096
0.9101
0.9106
0.9112
0.9117
0.9122
0.9128
0.9133
8.2
0.9138
0.9143
0.9149
0.9154
0.9159
0.9165
0.9170
0.9175
0.9180
0.9186
8.3
0.9191
0.9196
0.9201
0.9206
0.9212
0.9217
0.9222
0.9227
0.9232
0.9238
8.4
0.9243
0.9248
0.9253
0.9258
0.9263
0.9269
0.9274
0.9279
0.9284
0.9289
8.5
0.9294
0.9299
0.9304
0.9309
0.9315
0.9320
0.9325
0.9330
0.9335
0.9340
8.6
0.9345
0.9350
0.9355
0.9360
0.9365
0.9370
0.9375
0.9380
0.9385
0.9390
8.7
0.9395
0.9400
0.9405
0.9410
0.9415
0.9420
0.9425
0.9430
0.9435
0.9440
8.8
0.9445
0.9450
0.9455
0.9460
0.9465
0.9469
0.9474
0.9479
0.9484
0.9489
8.9
0.9494
0.9499
0.9504
0.9509
0.9513
0.9518
0.9523
0.9528
0.9533
0.9538
9.0
0.9542
0.9547
0.9552
0.9557
0.9562
0.9566
0.9571
0.9576
0.9581
0.9586
9.1
0.9590
0.9595
0.9600
0.9605
0.9609
0.9614
0.9619
0.9624
0.9628
0.9633
9.2
0.9638
0.9643
0.9647
0.9652
0.9657
0.9661
0.9666
0.9671
0.9675
0.9680
9.3
0.9685
0.9689
0.9694
0.9699
0.9703
0.9708
0.9713
0.9717
0.9722
0.9727
9.4
0.9731
0.9736
0.9741
0.9745
0.9750
0.9754
0.9759
0.9763
0.9768
0.9773
9.5
0.9777
0.9782
0.9786
0.9791
0.9795
0.9800
0.9805
0.9809
0.9814
0.9818
9.6
0.9823
0.9827
0.9832
0.9836
0.9841
0.9845
0.9850
0.9854
0.9859
0.9863
9.7
0.9868
0.9872
0.9877
0.9881
0.9886
0.9890
0.9894
0.9899
0.9903
0.9908
9.8
0.9912
0.9917
0.9921
0.9926
0.9930
0.9934
0.9939
0.9943
0.9948
0.9952
9.9
0.9956
0.9961
0.9965
0.9969
0.9974
0.9978
0.9983
0.9987
0.9991
0.9996

참고로 1부터 10까지의 상용로그 값을 32자리수로 표현하면 다음과 같다. 즉, 로그 값의 1(溝)분의 1자리까지 표현한 것이다.
[math(\begin{aligned}\log 1 &= 0 \\
\log 2 &= 0.3010\, 2999\, 5663\, 9811\, 9521\, 3738\, 8947\, 2449 \\
\log 3 &= 0.4771\, 2125\, 4719\, 6624\, 3729\, 5027\, 9032\, 5512 \\
\log 4 &= 0.6020\, 5999\, 1327\, 9623\, 9042\, 7477\, 7894\, 4899 \\
\log 5 &= 0.6989\, 7000\, 4336\, 0188\, 0478\, 6261\, 1052\, 7551 \\
\log 6 &= 0.7781\, 5125\, 0383\, 6436\, 3250\, 8766\, 7979\, 7961 \\
\log 7 &= 0.8450\, 9804\, 0014\, 2568\, 3071\, 2216\, 2585\, 9264 \\
\log 8 &= 0.9030\, 8998\, 6991\, 9435\, 8564\, 1216\, 6841\, 7348 \\
\log 9 &= 0.9542\, 4250\, 9439\, 3248\, 7459\, 0055\, 8065\, 1023 \\
\log 10 &= 1\end{aligned})]
추가로,
[math(\begin{aligned}\log e &= 0.4342\, 9448\, 1903\, 2518\, 2765\, 1128\, 9189\, 1661 \\
\log \pi &= 0.4971\, 4987\, 2694\, 1338\, 5435\, 1268\, 2882\, 9090 \end{aligned})]
근데 log2, log3, log7의 값만 알면 1부터 10까지 자연수들의 상용로그 값은 다 구할 수 있다.[8] 사실 소수 (prime number)들의 상용로그 값만 알면 모든 자연수의 상용로그 값을 구할 수 있다.[9]

6.1. 로그표를 이용한 계산의 예


'''123 x 4.5'''를 계산한다고 하자. 로그를 취하고 로그의 성질을 이용해 정리한다.
$$\log(123 \times 4.5) = \log123 + \log4.5 = \log(1.23 \times 100) + \log4.5 = \log1.23 + \log100 + \log4.5$$
로그표에서 1.23과 4.5의 값을 찾는다.
$$ = 0.0899 + 2 + 0.6532 = 2.7431$$
즉, $$\log(123 \times 4.5) = 2.7431$$이 된다. 이제 이 값에서 로그를 벗기기 위해 정수 2는 잠시 떼고 0.7431의 값을 로그표에서 역으로 찾는다. 대략 5.53(0.7427)과 5.54(0.7435) 사이의 값이 된다. 더 정확한 표라면 비례부분을 사용해서 소수점 셋째자리까지 알 수 있겠지만 이 표로는 알 수 없으므로 대략 절반인 5.535라고 하자.[10] 여기에 아까 떼버린 2의 로그를 벗긴 값 100을 곱해주면 '''553.5'''가 된다.

6.2. 상용로그표 계산하기


오늘날엔 간단한 공학용 계산기나 어플만 있으면 쉽게 로그값을 구할 수 있다.[11] 하지만 그 이전까진 임의의 로그를 계산하기 위해선 로그표를 찾는 수 밖에 없었다. 상용로그표는 1617년 헨리 브릭스에 의해 처음 작성되었다. 브릭스는 1부터 1000까지 정수의 상용로그를 소수점 아래 18자리까지 계산했고 출판할 때는 14자리로 줄였다. 이후 300년간 로그표는 브릭스가 계산한 표에서 자릿수만 잘라낸 것이다. 그렇다면 브릭스는 어떻게 맨땅에서 상용로그표를 구했을까? 리처드 파인만파인만의 물리학 강의대수학 파트에서 수체계를 구성하면서 브릭스의 방법으로 로그값을 계산하는 것을 보였고 이 문단도 그 방식을 따른다. 실제로 브릭스의 방식을 사용해 로그 테이블을 재구성해본 프로젝트가 있으니 참조.
  • 1600년대 기술력에 맞춰 계산에는 사칙연산제곱근만을 사용할 수 있다고 가정한다. (오늘날엔 제곱근 계산법을 교과과정에서 배우지는 않지만 계산기가 일반화되기 전엔 필수 과정이었다.)
  • log x = y는 x = 10y이니 결국 10의 지수를 계산하는 것이 관건이다. 하지만 현재 (정수가 아닌) 지수를 구하는 방법은 제곱근(x1/2) 밖에 모르니 여기에서부터 시작하자.
밑수 10에 대한 제곱근(101/2)과 그 값의 제곱근(101/4), 또 그 값의 제곱근(101/8)을 반복해서 계산한 중간 테이블을 작성한다.
x
10x
비고
1
10

1/2
3.16228...
log3.16... = 0.5라는 사실을 알 수 있다.
1/4
1.77828...
여기까지 계산하면 logx = 0.25, 0.5, 0.75를 알 수 있다.
1/8
1.33352...
1/16
1.15478...
1/32
1.074607...
1/64
1.036633...
1/128
1.018152...
1/256
1.0090350...
1/512
1.0045073...
1/1024
1.0022511...
...
...

△/1024
(△→0)
1+0.0022486△
비례부분[12]
브릭스는 이 값을 1/254까지 계산했다고 알려져 있으니 그야말로 엄청난 계산 노가다를 한 것이다. 물론 지금 한 것은 중간 테이블을 계산한 것 뿐이고 '''진짜 로그값은 지금부터 구해야된다. '''
log2부터 시작해보자. log2를 계산하는 것은 결국 10x = 2인 x를 구하는 것과 같다. x가 1/2라면 3.16...이고, 1/4라면 1.77...이므로 두 값의 사이라는 것을 알 수 있다. 2를 1.77...로 나눠보자.
2 / 1.77828 = 1.124682
1.124682는 101/16(=1.15...)보다 작고 101/32(=1.07...)보다 크므로 두 값의 사이라는 것을 알 수 있다. 1.07...로 나눠보자.
1.124682 / 1.074607 = 1.046598
이 계산을 반복하면 결국 2가 어떤 수의 곱으로 이루어졌는지 알 수 있다.
1.046598 / 1.036633 = 1.009613
1.009613 / 1.0090350 = 1.000573
작성한 표를 사용해 계산할 수 있는 부분이 끝났으므로 여기에서 멈춘다. 나머지인 1.000573은 비례부분으로 계산한다.(△=0.254)
[math(\therefore 2 = (1.77828)(1.074607)(1.036633)(1.0090350)(1.000573) \\
= 10^{(\dfrac{1}{4} + \dfrac{1}{32} + \dfrac{1}{64} + \dfrac{1}{256} + \dfrac{0.254}{1024})} = 10^\dfrac{308.254}{1024} = 10^{0.30103})]
$$\therefore \log2 = 0.30103$$
사칙연산만으로 log2를 구했다! 그러나 우리에게는 아직 3부터 999까지의 값이 남아있다. '''행운을 빈다.'''

[1] 과학에서 상용로그를 사용하는 가장 대표적인 사례는 pH이다.[2] 계산기처럼 지금도 상용로그를 $$\log x$$라고 쓰는 분야도 있다.[3] 고등학교 과정의 로그 계산에서 $$\log 2$$와 $$\log 3$$은 정말 자주 나온다. log2 = 0.3010, log3 = 0.4771, log7 = 0.8451이다. 2~10까지는 모두 이것들을 통해 계산 가능하다.[4] 보면 알겠지만 바닥함수 $$\lfloor x \rfloor$$(고등학교까지는 가우스함수라고 배우는 그것)에 $$\log x$$를 넣으면 지표가 나온다. 가수는 $$\log x - \lfloor \log x \rfloor$$로 계산하면 되고.[5] 현재 고등학교 교육과정에서는 $$n$$를 정수부분, $$a$$을 소수부분이라고 가르친다.[6] 당연하지만 '''0이 아닌 수를 제곱해서 0이 나오는 것은 불가능하기 때문에''' log 0은 정의되지 않는다.[7] 소수점 더 아래부분까지 계산하기 위해 옆에 비례부분을 넣기도 한다.[8] log5는 로그의 성질에 따라 log2+log5=log(2×5)=log10=1이므로 log2만 알면 된다. 마찬가지로 log4=log2+log2, log6=log2+log3, log8=log2+log2+log2, log9=log3+log3또한 성립한다.[9] 산술의 기본정리에 따라 1을 제외한 모든 자연수는 소인수분해 할 수 있기 때문. 똑같은 방법으로 n번째 소수를 qn이라고 하면 qn+1이 나오기 전까지의 자연수들의 상용로그를 q1(=2)부터 qn까지의 소수들로 구할 수 있다.[10] 우연의 일치로(...) 비례부분을 사용해서 5.535의 값을 계산하면 0.7431이 된다.[11] 참고로 컴퓨터는 로그값을 구하기 위해 CORDIC 알고리즘을 사용한다.[12] 이 값은 (10x-1)/x의 극한값을 추정해서 얻어졌다. 계산을 반복하면 약 2.3025에 수렴함을 알 수 있고, 이를 역산해서 구한다.