격자점
1. 개요
lattice point ・ 格子點
좌표계에서, 좌표가 모두 정수인 점을 '''격자점'''이라고 한다. 격자점이 찍혀 있는 모습이 격자무늬를 닮아 붙은 이름이다. 수직선에서는 $$x$$좌표가, 좌표평면에서는 $$x$$, $$y$$좌표가, 좌표공간에서는 $$x$$, $$y$$, $$z$$좌표가 정수인 점이다. 격자점을 꼭짓점으로 해서 초입방체 또는 정축체를 만들 수 있다.
일반적으로, $$x_1$$, $$x_2$$, $$\cdots$$, $$x_n$$이 모두 정수이면, $$n$$차원 공간의 점 $$(x_1,\,x_2,\,\cdots,\,x_n)$$은 격자점이다.
다음은 2차원 공간 중 $$\{(x,\,y)|-4 \leq x \leq 4, \,-4\leq y \leq 4 \}$$인 영역의 격자점을 나타낸 것이다. 여기서 $$x$$를 $$\Re(z)$$, $$y$$를 $$\Im(z)$$에 대응시키면 가우스 정수를 나타내는 격자점이 된다.
[image]
격자점의 집합은 보통 격자('''l'''attice)의 머릿글자에 대응하는 그리스 문자 [math(\Lambda)](람다)로 표기한다.
2. 성질
2.1. 픽의 정리(Pick's theorem)
오스트리아의 수학자 게오르크 알렉산더 픽(Georg Alexander Pick)이 발견하여 그의 이름을 딴 정리이다.
좌표평면에서, 격자점을 꼭짓점으로 하는 다각형의 넓이를 $$A$$, 다각형 내부에 있는 격자점의 개수를 $$I$$, 다각형의 둘레에 있는 격자점의 개수를 $$B$$라고 하면 다음 등식이 성립한다.
픽의 정리는 2015학년도 아주대학교 자연계열(의대) 수리논술 문제에 등장하였다.
3. 활용
3.1. 복소해석학
아이젠슈타인 정수로 이루어진 삼각형 격자점 등을 다룬다. 이외에도 바이어슈트라스 타원 함수 $$\wp$$ 등 복소평면 위의 격자점과 관련된 함수가 있다.
3.2. 현대대수학
격자점을 가장 많이 쓰는 분야로, 주요 대상만 해도 준격자, 완비 격자, 순서 격자 등이 있다.
3.3. 고등학교 시험
고등학교 모의고사나 수능에서는 그래프나 축으로 둘러싸인 도형 안의 '''격자점의 개수'''를 세는 문제가 종종 나온다. 더욱 업그레이드하여 '''각 점이 모두 격자점인 정사각형의 개수'''를 구하라는 경우도 있다. 기울기가 일정한 일차함수로 문제를 내면 너무 쉬우므로, 기울기가 일정하지 않은 이차함수, 유리함수, 무리함수, 로그함수, 지수함수, 원의 방정식 등을 문제로 내곤 한다. 그래프를 정확히 그려야 격자점의 개수도 정확히 셀 수 있으며, 정사각형의 개수를 구할 때는 가능한 정사각형의 모양까지 모두 따져야 한다. 이러다 보니 개중에는 너무 복잡하여 노가다에 가까운 문제들도 있다.
이런 유형은 부등식의 영역을 제대로 이해하는지, 경우에 따라서는 격자점의 개수를 수학적 표현으로 일반화할 줄 아는지, 경우를 분류하여 가능한 격자점의 개수를 효과적으로 구할 줄 아는지 물어보는 것이 출제 의도이다. 이런 점에서 격자점 세기 문제는 경우의 수를 구하는 문제이기도 한데, 함수의 그래프를 다룬다는 점을 더 중요하게 평가하여 확률과 통계 문제로는 분류하지 않는다.
2000년대~2010년대 초중반에는 복잡한 격자점 문제가 30번 등의 킬러 문제로 나오는 경우가 잦았지만 최근에는 출제 빈도가 시들한데, 킬러 문제보다는 그냥 간단한 수준으로 약간 등장하는 추세이다.
3.3.1. 킬러 문제 예시
아래 예시 말고도 그동안 상당히 많이 출제되었는데, 그중에서도 특히 정답률이 낮은 문제를 소개했다. 실제 관습에 따라 '''평가원 모의평가와 수능'''은 '''시행 연도보다 1년 늦은 연도'''로 표기하고, '''교육청 모의고사'''는 시행 연도를 '''그대로''' 표기하였다.