미적분Ⅱ(2009)
1. 개요
이공계열에 진학하고자 하는 고등학생들이 배우는 교과목으로, 과거(7차 심화 선택)의 「미분과 적분」에 있던 '지수함수와 로그함수'와 고1 과정에 있던 삼각함수 부분이 추가 된 과목이다. 미적분Ⅰ에서 배운 극한, 미분, 적분을 기반으로 지수함수,로그함수,삼각함수를 추가적으로 배우고 고등학교 교과과정의 6함수[1] 의 합, 차, 곱, 몫과 합성함수,역함수로 만들어진 다양한 함수, 그리고 음함수와 매개변수로 정의된 함수들의 극한, 미분, 적분을 배운다.
2. 교과 내용
2.1. Ⅰ. 지수함수와 로그함수
2.1.1. 지수함수와 로그함수의 뜻과 그래프
수학Ⅱ에서 학습했던 지수와 로그의 개념을 바탕으로 지수함수, 로그함수의 뜻과 그래프, 그리고 그 특징을 배운다. 기초적인 지수함수와 로그함수를 배우고, 평행이동과 대칭이동을 시키면서 다양한 개형을 익히게 된다. 이들 함수의 특징은 무엇인지, 함수의 그래프를 다루는 문제에서 평행이동과 대칭이동의 관계, 역함수 관계인지 알면 문제를 푸는데 편리한 경우가 많다. 그 특징에 대한 풍부한 이해가 필요하다. 참고로, 로그함수를 설명하는 부분에서 기존 교과과정과 미세한 차이가 있는데, 여기서 로그함수를 지수함수의 역함수로 소개하고 있다. 지수함수와 로그함수의 개념을 바탕으로 지수·로그 방정식, 부등식을 배운다. 지수/로그함수는 일대일함수이고, 증가 혹은 감소이기 때문에 이러한 성질을 기반으로 하여 방정식과 부등식을 풀 수 있다. 문제를 풀 때 지수 방정식/부등식의 경우 문자를 다루는 과정에서 치환을 하게 되는데 정의역에 따라 치환한 문자의 범위가 달라질 수 있음에 유의하자. 예를 들어 2x를 문자 t로 치환할 때 무작정 t는 무조건 양수라고 외우지 말고 x값에 따라 t의 범위도 달라 질 수 있음을 알아두자. (예 : x>0이라 주어지면 t>1) 정의역에 주의할 것. 로그의 진수나 밑에 문자가 오는 방정식/부등식의 경우 항상 밑 범위,진수 범위에 유의하도록 한다. 방정식을 풀고 나서 이 조건에 의해 근이 될 수 없는 것들도 있기 때문이다. 지수/로그 부등식의 경우 특히 상당수의 학생들이 문제를 풀다 한 번 이상 하는 실수가 있는데, 밑의 범위를 확인하지 않고 양변에 로그를 취하거나 지수로 올리는 것이다. 밑의 범위에 따라 부등호의 방향이 바뀔 수 있음을 유의해야 한다.
2.1.2. 지수함수와 로그함수의 미분
여기서 자연로그의 밑 [math(e)](= 2.718281828459045235...)과 자연로그(ln)를 배우고 간단한 지수함수와 로그함수의 미분법을 배운다. (여기까지 단계에서는 후에 학습하는 미분법 단원의 합성함수의 미분법을 아직 배우지 않았기 때문이다.) 기존 교과 과정의 수학Ⅱ에 있던 지수·로그함수의 극한, 미분법이 이곳으로 이동됐다. 기존 교과과정과의 차이점이라면 이미 미적분Ⅰ에서 함수의 극한과 미분법을 배운 바 있기 때문에, 지수·로그함수를 학습한 직후 이 단원을 학습하게 된다. 지수·로그함수의 극한을 통해 배우는 의의는 두 가지다. 첫번째는 이를 바탕으로 점근선이 어디서 어떻게 발생하는지 알아낼 수 있다. 이는 후에 배울 미분법 단원에서 복잡한 함수에 대해 분석하는 기반이 된다. 기존의 간단한 함수들과 달리 이들은 개형도 모르는 생판 처음 접하는 함수들이고, 점근선이 어디서 생길지도 모르기 때문이다. 두 번째는 지수·로그함수의 미분을 계산하는 기본적인 방법을 배우는 것이다. 이과용으로 배우는 단원이긴 하지만, 상경계열 대학의 경우 경제수학에서도 다루는 내용이기도 하다.
지수/로그함수에서 어려운 문제를 낼수 있다면 격자점(개수세기), 역함수 응용 정도가 있다. 격자점 문제란, 어떤 부등식의 영역에 포함되어 있는 정수 좌표의 개수를 세는 것인데, 지수/로그 함수의 제곱의 성질을 이용해서 출제가 된다. 실제로 격자점 문제가 30번 문제에 악랄하게 출제된적이 있으며, 그 이후로 격자점 문제는 개수새끼로 불려진다(..) 최근 모평에도 등장하였다. 역함수 응용이란, 말그대로 지수함수와 로그함수가 역함수 관계임을 이용해서 ㄱㄴㄷ 선지 판단을 하는것인데, 상당히 까다롭다. 나온다면 주로 준킬러 문제로 나오며 지수/로그함수 파트를 만만하게 보다가 털리기 농후하므로 철저히 논리중심으로 공부할 것.
2.2. Ⅱ. 삼각함수
2.2.1. 삼각함수의 뜻
삼각함수의 뜻과 삼각함수의 그래프 단원은 이전 교육과정에서는 공통수학에 있던 단원이었으나 이 곳으로 넘어왔다. 삼각함수의 미분 단원은 예전부터 이과용 단원이다. 중학교 3학년 때 직각삼각형의 변들의 길이 비를 나타내는 삼각비를 배운 바 있다. 그리고 고등학교 과정에서는 원점을 중심으로 하는 원의 중심과 원 위의 한 점의 좌표 사이의 관계로 새롭게 삼각함수를 정의한다. 엄연히 말하면 삼각비와 삼각함수는 비슷하지만 정의가 다르다. 중학교때 배운 삼각비는 제1사분면에 한정해서 배운것이라고 생각하면 된다. 이 때 일반각과 호도법을 처음 배우는데, πrad=180º를 기준으로 특수각의 라디안 값은 기억해 두는 것이 좋다. 기초적인 계산문제를 빠르게 넘어갈 수 있다. 또한 $$\displaystyle \frac{n \pi}{2} \pm \theta$$의 삼각함수 변형 공식은 일일히 외우기보다는 바꾸는 요령을 익히고 원리를 이해하려 노력하자. 예를 들어 1+tan2x=sec2x, 1+cot2x=csc2x 등 "1개가 타면(tan) 새카맣게(sec) 탄다.", "1개의 코가 타면(cot) 코가 새카맣게(csc) 탄다"로 외우면 된다. 삼각함수 사이의 관계등을 제대로 익혀두지 않으면 이후 미분법, 적분법 단원에서 삼각함수가 나올 때 계산이 힘들어진다. 또, '''기하와 벡터'''에서 두 평면 사이의 이면각, 벡터의 내적을 계산할때 삼각함수가 이용되기 때문에 정말 열심히 해야되는 단원이다.
2.2.2. 삼각함수의 그래프
삼각함수의 그래프는 삼각방정식과 삼각부등식을 풀 때 유용하게 쓰이므로 필히 개형을 기억해야 한다. 또한 후술할 지수 및 로그함수와 마찬가지로 단원의 특성상 삼각함수의 각 계수의 위치 또는 그 값에 따라 삼각함수의 폭, 주기, 최댓값, 최솟값 등 그래프의 고유한 특징이 어떻게 변화하는 지에 대한 특징에 대한 전반적인 이해도 중요하다.
2.2.3. 삼각함수의 미분
이전의 삼각함수의 극한 및 미분에 대해 다루었던 바와 마찬가지로 먼저 덧셈정리를 소개하고, 이를 이용해 삼각함수의 극한과 미분을 구하는것까지는 동일하지만, '''덧셈정리 관련 내용을 거의 말살했다.''' 기본적인 덧셈정리 sin(a±b), cos(a±b), tan(a±b) 외의 복잡한 덧셈정리 관련 파생 공식들, 이를테면 삼각함수의 합성이나 합차공식(합->곱, 곱->합으로 변환하기), 배각•반각공식 및 혹은 직접적으로 활용하여야만 하는 문제들을 '''전부 삭제했다.'''[2] 사실 배각•반각 공식은 삼각함수의 덧셈정리로 쉽게 유도되므로 그냥 외워두자. 설령 수능•모의고사에서 배각공식이 꽁꽁 숨어서 나와도 평가원에서는 그냥 덧셈정리 냈다고 우기면 땡이니까 우리가 달리 딴지를 걸 방도는 없다.[3] 어차피 문제 풀다보면 외우게 되어 있다. 또, 반각공식을 알면 훨씬 쉽게 적분할 수 있는 함수가 있는데 대표적으로 sin2x 가 있다. 이는 sinx·sinx로 변형 후 부분적분을 적용해서 풀 수 있긴 하지만, 계산 과정이 상당히 복잡하다. 반각 공식을 이용하여 $$\displaystyle \frac{1 - \cos{2x}}{2}$$ 로 변형하면 훨씬 쉽게 적분할 수 있다. 배각공식 또한 정말 많이 이용되므로 반드시 배각•반각 공식은 암기하자. 교과 외의 내용을 굉장히 혐오하고 교과서적인 풀이만을 중시하는 한석원 선생님조차도 배각•반각 공식만큼은 외울 것을 강조한다. 또 빠진 내용으로는 삼각함수의 합성이 있는데, 이는 덧셈정리의 역연산이다. 합성 또한 정말로 중요하기 때문에 교과 외지만 알아두는 것을 추천한다.[4] 몰라도 괜찮지만 알아서 손해볼 건 없고, 가끔씩 문제에서 쓰일 때는 있다.[5] 더도 말고 덜도 말고 배각•반각, 합성 정도만 알아둬도 충분하다. 교과과정 내에 있는 내용으로 쉽게 증명이 가능한 공식들은 외우는게 좋다. 실제로 최근 학평에서 배각공식이나 반각공식을 대놓고 쓰는 문제가 출제되는 경향이 있어서 학생들 사이에서는 사실상 외워야 하는 공식이 되었다.
삼각함수 파트에서 어려운 문제를 낸다면, 평면 도형과 관련된 극한문제로 나오는데, 최근 모평에서 단골손님으로 출제된다. 보통은 준킬러에 해당되는 17~20번 문제에 등장하며, 도형의 성질을 못찾는다면 상당히 골때릴 수가 있다. 이전에는 교과외를 이용하면 쉽게 풀리는 문제들이 많았지만, 요즘은 극한 계산은 더럽지 않고, 오히려 도형의 성질을 더 꼼꼼히 숨겨놓는 방향으로 출제되고 있다. 2019학년도 6월 모평과 7월 학평이 대표적인 예시이다. 이를 잘하긴 위해서는 중학도형을 정말 열심히 하는것이다. 외심, 내심, 무게중심, 닮음, 각의 이등분선, 중선 정리, 원주각, 접선과 현의 성질, 원과 비례, 접선과 할선까지만 알아두면 큰 문제는 없다.
2.3. Ⅲ. 미분법
2.3.1. 여러 가지 함수의 미분법
본격 헬게이트 시작. 분수함수, 무리함수, 역함수, 합성함수의 미분을 배운다. 이로써 지금까지 배운 모든 함수를 미분하는 것이 이 단원에 들어와서야 가능해졌다. 지수함수와 삼각함수가 곱해져 있든, 나눠져 있든, 로그함수와 유리함수가 합성되어 있든, 모든 함수를 미분 가능하다. '''공식이 조금 많다.''' 참고로, 여기서 함께 다루던 음함수의 미분법, 매개변수로 나타내어진 함수의 미분법은 기하와 벡터로 이동했다. 여기서 tanx의 도함수를 유도하는 것을 배운다.[6] 미분법이 정말 다양하기 때문에 모든 미분법을 암기하고 그에 따라 변형하여 문제를 풀어야 하는 귀찮은 단원이다. 역함수의 미분법의 개념에 대해서 절대 흔들리지 말아야 하며, 지수함수의 미분을 응용하여 쌍곡선함수[7] 의 성질을 묻는다. 2017학년도 대학수학능력시험 대비 6월 모의평가 수학 가형 21번이 대표적인 예시.[8] 이는 기하와 벡터에서도 다시 나온다. 이것도 이과용으로 배우는 단원이긴 하지만, 상경계열 대학의 경우 경제수학에서도 다루는 내용이기도 하다. 교과서에서 이계도함수를 배울 때 '''상수계수 이계 제차 선형 상미분방정식 '''이 튀어나온다. 하지만 다행히 특정 해를 제시하고 그 해가 해당 미분방정식의 해임을 보이는 문제에서 등장하기 때문에, 그냥 미분 한 번, 두 번 해서 식에 대입하면 풀린다.[9]
2.3.2. '''도함수의 활용'''
미적분Ⅰ에서 다루지 않았던 초월함수의 접선의 방정식,변곡점 ,함수의 그래프, 방정식과 부등식에서의 활용을 배운다. 이를 토대로 정말 가지가지의 함수의 그래프를 그릴수가 있다. 일명 '''절대극점'''이라 해서, 절편, 대칭성, 극값, 점근선, 이 4가지 요소를 이용해서 함수의 그래프를 그린다. 그래프에 따라서 변곡점을 이용해서 오목과 볼록의 판단을 해야될 때도 있다. 극값과 점근선을 따지는 것이 가장 중요하며, 복잡하고 다양한 함수의 그래프를 많이 그려보는 연습이 필요하다. 당연하게도 절댓값이 씌워진 경우에 대해서도 그릴줄 알아야된다. 전반적인 문제 난이도는 '''미적분 1'''과는 비교도 안되게 어렵다. 교과서와 개념서에는 안나와있지만, 삼차함수는 변곡점에 대해서 점대칭이란 사실도 알아야 된다.[10] 킬러 문제들을 보면, 다항함수를 초월함수에 합성시킨 함수가 굉장히 많이 등장하므로, 다항함수가 갖는 성질, 대칭성, 극값의 존재와 가질 수 있는 개수 등등을 모두 숙지하고 있어야 한다. 그리고 미적분 1에서 배운 평균값 정리, 사이값 정리는 마르고 닳도록 보자. 정말 매우매우 중요한 개념인데 미적분 2 교과서에서는 그 개념을 다시 다루지는 않는다. 미분과 적분에서 평균값 정리, 사잇값 정리는 마치 평면 도형에서의 피타고라스 정리 급의 위상을 갖고 있다. 실근의 존재 여부, 극값과 변곡점의 부호 변화를 판단하는데 매우 요긴하므로 반드시 체화할 것. 특이한 점은, 극값의 정의를 연속함수에서'''만''' 다루던 것이 '''임의의 열린 구간'''으로 대학교에서 쓰는 정의와 동일하게 바뀐 것이다.
이과 수학에서 가장 어려운 문제인 30번 문제가 미분 또는 적분 단원에서 출제된다. 2017학년도 이과 수학 대수능 30번이 사차함수와 관련되어 나왔는데 정답률이 2퍼센트대를 찍었다. 수능 역사상 손가락 두개 안에드는 최악의 정답률을 기록했는데,[11] 문과생도 몫의 미분법만 알고 있다면 충분히 풀수 있는 문제로 나왔다. 다항함수가 갖는 성질이 오히려 초월함수에 비해 많기 때문에 실제로 킬러 문제들을 보면 대부분이 다항함수가 등장한다. 그러므로 미적분 1을 복습 안한 이과생은 미분과 적분 킬러 문제에서 털리기 쉽다.
2.4. Ⅳ. 적분법
2.4.1. 여러 가지 함수의 적분법
'''고등학교 이과 수학의 최종보스.''' 미분 단원에서 수많은 공식에 허덕이던 때는 아무것도 아니었다.
물론 미분만으로 최상급 킬러의 난이도를 낼 수 있지만 적분문제 해석에도 쓰이는 경우가 다분하기 때문에 정말 최종보스라고 하는 것이다. [12] ''' 나중에 대학 미적분학을 배우게 될 학생들은 새로운 함수나 치환법만을 추가하여 복잡한 적분연산을 또 하게 되므로 여기서 연습을 잘 해가야 한다. 부정적분과 정적분이라는 용어와 전체적인 틀(미적분의 기본정리, 정적분과 급수 등)은 미적분Ⅰ과 동일하되 초월함수의 적분을 다룬다. 새로운 적분법인 일정 부분을 치환하여 적분하는 치환적분법이 있다. 치환적분은 합성함수 미분의 역과정이라 보면 된다. 이때, 정적분의 경우 치환후 적분구간이 바뀐다는 점을 유의하자. 미적분 1에서 배운 정적분의 이동 또한 치환적분법의 일부이다. 또, 두 종류로 된 함수를 부분으로 나누어 적분하는 부분적분법을 배운다. 부분적분은 곱 미분의 역과정으로 보면 된다. 부분적분에선 보통 미분하기 쉬운 함수와 적분하기 쉬운 함수를 정해놓는다. 일반적으로 f(x)×g'(x)를 부분적분한다고 치면, f에 들어가는 함수(즉, 미분할 함수)를 속칭 로다삼지(LIATE)라고 외운다.
치환적분법과 부분적분법을 배우고 나면 그제서야 로그함수의 부정적분과 탄젠트함수의 부정적분을 구할 수 있다. 로그함수는 밑의 변환을 통해서 자연로그로 변환해준 다음, 로그함수에 1이 곱해져 있다고 생각하여, 부분적분을 통해서 부정적분을 구할 수 있다. 로그함수의 부정적분을 구하는 과정은, 발상 자체가 까다로우므로 반드시 외워야 한다.[13] 탄젠트함수는 사인/코사인으로 바꿔서 코사인을 치환적분하면 도함수를 구할 수 있다. 아주 신기한 건, 탄젠트함수를 적분하면 로그함수와 코사인함수의 합성함수 식으로 나오게 되는데[14] , 이를 통해서 로그함수와 삼각함수가 약간은 관련있는 듯하다. 부분적분에서 꿀팁이 있는데, 지수함수×다항함수 또는 삼각함수×다항함수의 부정적분을 구하려면, 원래는 여러 번 부분적분을 해야 한다. 그러나 저 식들의 부정적분은 일반화해서 공식화할 수 있다. 궁금하면 한 번쯤 혼자서 증명하길 바란다. 대부분의 책에 쓰여 있지 않다. 누누이 말하지만 지수함수×다항함수[15] 또는 (코)사인함수×다항함수[16] 꼴만 가능하다. 공식화가 가능한 이유는, 지수함수의 도함수는 본함수와 실수배 관계이고, 사인함수와 코사인함수의 이계도함수도 본함수와 실수배 관계이기 때문에 가능하다. 꼭 증명해 보고 그것을 본인 것으로 만들길 바란다.[17]
'''미적분 1'''에서는 적분문제 유형이 정형화 되어있기 때문에 미분 파트에 비해 어렵지 않은 단원이라는 인식이 많이 퍼져있는데, '''미적분 2'''의 적분 파트는 그야말로 헬게이트이자 평가원이 수능 30번 문제를 여기서 출제하므로 가장 까다로운 파트이다. 개념자체는 미적분 1과 동일하기 때문에 문제 응용에서 많이 털린다. 미분과 엮어서 출제할 경우, 난이도는 기하급수적으로 증가하게 된다. 역함수 및 합성함수까지 등장하면 멘붕 of 멘붕이 된다. 이를 잘하기 위해서는 '''미적분 1'''에서 배운 사이값 정리, 롤의 정리, 평균값 정리를 정확히 공부할 것. 미분 가능성의 조건, 역함수가 되기위한 조건, 극값 존재 여부, 구분구적법, 정적분과 급수의 관계, 정적분으로 정의된 함수 등등은 모두 미적분 1에서 다뤘기 때문에 미적분 2 책에서는 이 내용들이 누락되어있는 경우가 많다. 때문에 고3이 되어서도 '''미적분 1'''을 반드시 한 번쯤은 다시 공부해봐야 된다.
미적분 1에서는 다항함수의 적분만 배웠지만, 미적분 2에서는 유리함수, 무리함수, 지수 로그함수, 삼각함수의 적분을 모두 배우고, 치환적분법과 부분적분법을 배우기 때문에 이들 함수들이 합성되있거든, 곱해져있거든 대부분 적분을 할수가 있게 된다. 따라서 여러가지 함수의 적분 연습을 많이 해봐야 된다. 특히 삼각함수와 관련된 적분은, sin2x + cos2x = 1, 1 + tan2x = sec2x, 이 두 식을 적극 활용해야 적분이 가능한 함수도 있으므로 주의해야 한다. 또, sin2x와 같이 삼각함수의 제곱 꼴은 반각공식을 이용하여 적분할 수 있다. 개념에서 다루지 않는 내용이지만, sec(x), csc(x)를 적분하는 방법[18] 과, 삼각치환법 (사인치환, 탄젠트치환)까지만 알고 있으면 충분하다. 여담으로 교과 외이지만, 삼각치환법을 알고 있다면 원과 타원의 방정식도 정적분을 계산할 수 있다. 비록 원과 타원은 x와 y의 이차방정식 꼴인 음함수이지만, y=f(x) 꼴로 전환이 되므로 충분히 적분할 수 있다. '''기하와 벡터'''의 그림자와 관련된 정사영 파트에서 생각보다 유용하다.
2.4.2. '''정적분의 활용'''
초월함수 그래프의 넓이와 일부 입체도형의 부피를 배운다. 3차원을 간접적으로 다루는 내용이기에 가끔씩 공간지각 능력을 요구할 때도 있다. 다만 수능에서는 그런 문제는 출제하지 않는다. 두 곡선 사이의 넓이 부분은 종종 미적분 킬러와 엮어서 출제하기도 한다.
미분과 마찬가지로 대수능 30번문제 출제를 여기서도 한다. 최근 경향으로 봤을때 미분과 적분을 엮어서 내는 경우가 많다. 많은 킬러 문제를 풀어 봐야지만이 깨달을 수 있는것인데, xf'(x)가 보인다면 부분적분이 떠올라야되고, f(x)/x가 보인다면 역함수로 치환적분 해야겠다는 생각이 들어야 한다. (물론 그렇지 않은 문제도 있다.) 미분과 적분을 엮은 킬러문제들은 보통 정적분으로 정의된 함수가 주어지고, 그 함수의 성질이 주어진다. 기함수, 우함수인지 등등. 그리고나서 정적분으로 정의된 함수를 미분해서 도함수의 그래프를 그려보고, 도함수의 그래프를 토대로 본함수의 성질을 묻는 문제가 대부분의 킬러 소스이다. 여기서 평균값 정리와 사잇값 정리는 실근의 존재, 부호 변화, 미분계수의 존재 판단등에 쓰이므로 반드시 이 두 개는 머리에 각인하고 문제에 임해야 된다. 최근에는 30번의 난이도가 이전보다는 완화되었다. 그래도 기하와 벡터의 29번보다는 어렵게 출제가 되고, 대신 이차곡선, 삼각함수, 경우의 수 등의 준킬러 파트가 어려워지는 형태로 전환되고 있다.
3. 대학수학능력시험 수학 영역
- 미적분Ⅰ이 수리 가형의 직접 출제 범위는 아니지만, 극한의 의미, 연속의 의미, 미분의 정의와 기하학적 의미, 다항함수의 미분법, 정적분의 정의, 다항함수의 적분법 같은 핵심적인 내용은 꼭 알아두어야 한다. 너무 깊이 들어가지 않아도 된다. 핵심 내용만 쏙쏙 뽑아 정리하자. 나온 적이 없다고 공부하지 않아도 되는 것은 아니다. 하나의 사례를 들자면, 2016년 6월 모의평가 가형 29번에서도 속도와 가속도, 위치 개념을 모르면 풀 수 없게 출제되었다.
- 덧셈정리와 등비급수를 결합한 문제가 출제 가능하다. 2017학년도 수능완성 수학 가형 17쪽의 7번이 그 예시 문제이다.
- 미분법 단원에서 일차함수 혹은 이차함수와 지수함수를 곱한 함수를 이용하여 까다로운 킬러 문항을 만드는 경우가 많다. 그래프 개형이나 극점, 변곡점에 대한 정보를 숙지하고 관련 문제를 많이 풀어봐야 한다.
- 과거 이과만 배웠던 평균값 정리는 미적분Ⅰ으로 이동해서 나형에 평균값 정리가 출제 범위에 들어갔는데 가형에선 삭제되는 괴랄한 상황이 벌어졌다. 다만 가형도 간접적으로 등장할 수 있으므로 알아두는게 좋다[19] .
- 문제 풀이를 반복하다 보면 쉬운 4점문제까지는 누구나 어렵지 않게 풀 수 있지만, 미적분Ⅱ의 킬러문제는 주로 초월함수+미분+적분이기 때문에, 단원 통합형 문제에 대한 숙련도가 요구된다. 그런데 미분만으로 킬러문제를 만든 적도 있으며, 그 예가 오답률 97.0%를 기록한 17수능 30번이다.[20]
- 적분법 단원에서는 치환적분법과 부분적분법을 혼합한 1~2 문제, 미분과 통합한 킬러 1문제가 주로 출제된다.
- 적분은 빠르고 정확한 계산이 생명인 부분이고, 쉬운 문제나 보통의 문제는 단순 계산 혹은 약간 꼬아놓은 계산에서 그치지만 심화 고난도 문제의 경우 조건을 주고 함수를 추론하는 문제가 주로 출제되는데, 미적분Ⅱ의 함수들을 모조리 섞어버려 문제의 접근 자체를 짜증나게 만드는 경우가 정말 많다. 2016년 6월 모의평가 수학 가형 30번이 그 예시이다. 점대칭, 선대칭, 우함수, 기함수의 개념등이 잡혀있지 않으면 힘든 파트이고, 실제로 미적분의 어려운 문제는 대칭 함수를 이용하게 만든다.
- 2017학년도 수능에서 교육과정에서 탈락한 반각 공식을 알아야 쉽게 풀리는 문제가 출제되었다. 게다가 기출문제 중 기초 개념을 확립하기 좋은 문제 중 상당수가 배각과 반각 공식을 이용한다. 배각과 반각의 공식을 증명하고 공식을 외우는 것은 시간낭비가 아니다. 그걸 시간낭비라고 생각는 것은 학생의 자유이며 과거의 킬러문제들을 모두 놓치고 시험장에 들어서는 것도 학생의 자유이다.
- 2016 수능 세대까지는 지수함수와 로그함수를 문과도 배웠고, 킬러 30번 문항이 지수로그 함수와 개수세기를 조합한 흉악한 유형이었다. 규칙만 찾아낸다면 많이 걸려도 3분이면 풀어내는 문제이다. 역시 무한복습이 중요하다. 심한 경우 역대급 난이도로 출제하면 2012 수능 30번(공통) 또는 2016학년도 수능 A형 30번처럼 가형에도 출제될 수 있다. 제 아무리 가형이라도 정답률이 1~2%를 기어다니는 문제를 낼 수 있다.
- 삼각함수 파트의 경우, 2009 개정 교육과정의 적용으로 사인법칙, 코사인법칙 등 많은 내용들이 사라졌다. 기하와 벡터 등에서 중요한 공식인 사인법칙 및 코사인법칙을 배우지 않는 것은 물론이고, 이를 응용한 삼각형의 넓이 구하는 법도 빠졌다. 그래서 중3때 삼각비 배웠을 때 처럼 직각삼각형을 그려서 풀어야 한다. 반각 공식, 배각 공식 등 미적분에서 매우 중요한 공식들을 뺐다는 것에서 비판이 많다. 이런 공식들은 교육과정에서 빠졌지만 매우 중요한 법칙이므로 무조건 숙지하고 가는 것이 도움이 될 것이다. 더구나 특히 배각과 반각은 워낙에 중요한 까닭인지 어느 개념서는 교육과정 외임에도 불구하고 필요해 보여 특강을 추가해 두었고, 교과서에서도 개념 설명에서 없지만 예제와 문제에서 증명하라고 나오는 다소 치사한 방법으로 배각의 공식과 반각의 공식이 나왔다. 나중에 삼각함수 치환적분 할 때 엄청 유용하게 쓰이니 알아두자. 삼각함수 치환적분 관련 개념 자체가 굉장히 약화되었다. 교과서 내에서 삼각함수 치환 적분도 개념 설명 없이 연습 문제로 설명되며, 그것조차도 간단한 꼴만 다룬다. 하지만 주의할 것은, 공식적으로는 교육과정에서 빠져버린 까닭에 내신이나 논술에서 이런 용어 사용하려면 먼저 덧셈정리를 이용해서 증명해줘야 한다는 것이다. 안 그러면 풀이과정을 생략한 것으로 간주되어 피보니 주의.
- 삼각함수의 극한을 도형과 결합시킨 유형은 교과서에는 심화문제로 한두 문제 나올까 말까 하지만, 모의고사와 수능에서는 4점짜리로 밥먹듯이 등장하는 단골손님이다. 물론 4점짜리 아니랄까봐 교과서와 비교할 수 없는 난이도로 나온다. [21] 수리 나형의 무한등비급수 정도의 위상을 차지한다고 보면 된다. 그러기 때문에 기출문제를 많이 접하면서, 보조선을 그어 직각삼각형을 만들고 변의 길이를 삼각함수로 표현하는 연습을 많이 해봐야 한다.
- 초월함수를 주로 다루기 때문에 로피탈의 정리를 함부로 썼다 피보는 경우가 다항함수의 경우보다도 많다. 주의하도록 하자.
- 2학년 과정임에도 불구하고 수리 가형의 킬러문제(21, 29, 30번)들 중 2개인 21번, 30번 문항은 주로 이곳에서 출제한다! 21번은 적분법, 30번은 미분법이 많이 나오나 미분법과 적분법이 섞여 나오기도 한다. 29번은 기하와 벡터에서 출제.
4. 여담
- 이 과목은 이과용 과목이긴 하지만 문과생 중에서도 상경계로 진학을 목표로 하거나 상경계를 전공하고 있다면, 이 과목의 단원 중 초월함수의 극한과 미적분 부분을 익히면 대학에서 상경계 수학과목을 배우는 데 도움은 될 것이다. 또, 무리함수와 합성함수의 미분을 배워두면 편하다.
- 앞으로 고3 3월 모의에서는 이 과목에서 거의 80%로 출제한다. 7차 교육 과정에서 5문제밖에 안 나왔던 것과 대조적(...). 당시에는 '미분과 적분'이라는 선택과목으로 5문제가 나왔다. 당시 이과 전용 과목인 수학II에서는 초월함수 미적분이 없었다.
- 쉬운 개념에 비해 문제가 G랄맞은(!) 확률과 통계나 가히 최종보스급인 공간도형과 공간벡터를 비롯해 보스들이 단체로 집합한 기하와 벡터에 비교해 그 위상이 의외로 꽤나 추락해있고 나머지 둘은 3학년 과정임에 비해 이것만 2학년 과정이라, 이 때문에 미적분Ⅱ를 소홀히 하다 피보는 이과생들이 많으니 충분히 신경을 써줘야한다. 미적분Ⅱ의 위엄은 공식만 쫌 있는 개념이 아니라 문제에서 발휘된다. 부분적분만 좀 꼬아서 출제해도 계산이 흉악할 정도로(?) 길어져서 수험생들의 멘탈을 가루로 만들수 있기 때문에 미분 파트의 중하위 문제는 계산때문에 난장판이고 고난도 문제는 그냥 접근도 어렵고 계산도 끝이 없어서 난장판이다. 개념은 쉬울지 몰라도 어렵게 내라고 하면 다른 두 과목이 감히 넘볼 수 없을 정도로 압도적으로 어렵게 낼 수 있기 때문에 (공도벡은 난이도가 올라가도 계산이 길어지는 경우는 많지 않다.) 정작 킬러 30번 문항 같은 최상급 수능 문제들은 여기서 거의 100% 잘 나온다!!! 멀리 갈 것도 없이 2017학년도 수능 수리 가형 30번을 펼쳐보라. 단지 미분만으로 만들었음에도 불구하고 오답률이 97% 이상을 달린다.[22] 넓게 봐도 2012학년도에서 2017학년도 6월까지 가형 30번이 미적분II에서 출제된 횟수는 16번 중 총 14번(지수로그함수 5+미적분 9)이나 있으며 나머지 2문제는 간접범위인 미적분I에서 1문제(지수로그/2012학년도 6월), 기하와벡터 1문제(음함수의 미분/2014학년도 6월)에 해당된다. 오답률 1위로 따지면 16번 중 기하벡터 3문제(2013학년도 9월, 2014학년도 6월&수능) 미적분1 1문제(2012학년도 6월)를 제외하고 나머지 12문제 모두 미적분II에 해당된다.
- 차라리 꼬아서 낼지언정 깊이 파고든 문제는 보기 힘든 확률과 통계보다 여기가 더 난이도가 높은 편이니 일반 수준 문제를 보고는 만만히 여기고 기하와 벡터에만 집중하면 나중에 심히 곤란해진다. 워낙 삭제된 개념(특히 삼각함수 파트에서)이 많아 기출문제도 부족한 과목이다.
- 최근 난이도 있게 출제되는 단원은 3개가 있다. 삼각함수의 극한과 도형, 도함수의 활용(전반적인 미분의 개념을 모두 알아야 하고 함수에 대한 총체적인 이해를 요구한다. 미적분I에서 배운 평균값, 사이값, 롤의 정리 3대장은 고난이도 미분문제를 맞히고 싶다면 필히 복습할 필요가 있다.[23] ), 그리고 정적분으로 정의된 함수이다.
- 중학교 2학년 내신 시험에 이 교과에 해당하는 내용이 나와 논란이 되었지만 실상은 간단한 지수방정식 문제였다.[24] 사실 지수방정식 내용을 깊게 동원하지 않고 간단한 중2 수준의 지수 법칙 내용만으로 풀 수 있는 문제인데, 기사에서 저런 식으로 "중2 시험에 미적분"이라며 언플하기 시작. 역시 베플은 자세한 사정을 알 턱이 없는 머글들의 분풀이로 가득한 상태다. 참고로 지수, 로그 함수 단원은 6차 교육과정 때 고1 과정(구 7차 교육과정 초기에는 고2 과정의 문이과 공통과목이었던 수학Ⅰ)에 있었던 내용이다. 미적분과는 근본적으로 연결되지 않는다. 오히려 지수,로그함수 단원을 여기에 배치한 것 자체가 문제 있는 것.
- 이전 교육과정을 완전히 이해했다는 전제 하에 개념을 습득하는 난이도 는 미적분I보다 낮다. 미적분I은 새로운 개념이 많이 등장하지만 미적분II는 이전 개념들의 응용 성격이 강하기 때문.
- 2021학년도 수능부터는, 수능 시행 최초로 기하와 벡터 전체 내용이 출제 범위에서 제외되기 때문에, 앞으로 미분과 적분의 난이도가 다소 올라갈 것으로 예상된다.
- 다음 교육과정에서는 로마 숫자가 빠진 미적분이라는 과목으로 대체된다. 기존 미적분Ⅰ은 수학Ⅱ라는 과목으로 대체된다.
- '삼각함수'는 원래 고1 문·이과 공통으로 배우던 부분[25] 과 이과만 배우는 삼각함수 파트[26] 로 분할되어 있었다. 구체적으로 말하면 문이과 공통 부분은 시초선, 동경, 일반각, 호도법, 라디안, 사인함수, 코사인함수, 탄젠트함수, 사인법칙, 코사인법칙, 삼각함수, 주기, 주기함수, $$\sin x$$, $$\cos x$$, $$\tan x$$이고, 이과만 배우는 파트는 삼각함수의 덧셈정리, 삼각함수의 극한, 역삼각함수, 삼각함수의 미분이다. [27][28]
[1] 다항함수, 분수함수, 무리함수, 지수함수, 로그함수, 삼각함수[2] 다만 일부 교과서에 덧셈정리를 활용하여 배각 공식, 반각 공식을 증명하라는 문제가 나오고 삼각함수 합성이 살아있다.[3] 후술하겠지만 전국연합학력평가에서 이미 사례가 있다. 평가원이라고 못 할 이유는 없다는 것이다.[4] 특히나 전기전자공학과로 진학하려고 하는 경우 회로이론에서 교류 회로를 분석할 때 반드시 알아야 하는 개념이다.[5] 실제로 2018년 11월 전국연합학력평가 수학 가형에서 대놓고 배각공식을 써야 하는 문제가 29번으로 출제되었다! 문제 자체는 좌표화만 잘하면 어렵지 않게 풀이가 가능했지만, 배각 공식을 몰라서 못 푼 수험생이 많아 정답률이 10% 내외로 집계되었다. 만약 이 문제가 예전 교육과정 하에서 나왔다면 정답률이 40~50%는 우습게 나왔을 것이다. 2019년 고3 3월학평 가형 15번도 마찬가지다. 2019년 고3 4월학평 가형 29번에서도 마찬가지로, 반각공식을 아는지 모르는지에 따라서 문제 난이도가 천지차이가 된다.[6] 사실 몫의 미분 대신 앞에서 배운 탄젠트의 덧셈정리로 도함수를 유도할 수도 있다. 다만 계산이 조금 귀찮아질 뿐.[7] $$ \cosh{x} = \displaystyle \frac{e^x + e^{-x}}{2} $$, $$ \sinh{x} =\displaystyle \frac{e^x - e^{-x}}{2} $$, 혹은 $$ \tanh{x} =\displaystyle \frac{e^x - e^{-x}}{e^x+e^{-x}} $$. 다만 직접적으로 cosh x, sinh x, 또는 tanh x라고는 언급하지 않는다. 각각 우함수, 기함수, 기함수다. 나중에 대학교 가서 미적분 들을 때가 되어야 역삼각함수와 쌍곡선함수, 그리고 역쌍곡선함수를 정식으로 배우게 된다.[8] 조건에 맞게 f(x) 그래프를 그리면 결과적으로 tanhx가 나온다.[9] '''예제: $$ y = e^{-x} \sin x $$에 대하여 등식 $$ y'' + 2y' + 2y = 0 $$이 성립함을 보여라.''' 여담으로, 이 미분방정식은 이차방정식으로 제시되는 특성방정식($$y = e^{\lambda x}$$라고 가정했을 때 $$e^{\lambda x}(\lambda ^2 + 2 \lambda + 2) = 0$$)이 허근($$\lambda = -1 \pm i$$)을 갖기 때문에, 오일러 공식에 의해 삼각함수가 튀어 나온다. 해는 $$y = c_1 e^{-x} \sin{x} + c_2 e^{-x} \cos{x}$$이고, $$c_1 = 1, c_2 = 0$$일 때, 이 각주 맨 처음에 제시된 식이 된다.[10] 점대칭의 수학적 표현법: $$ f(a-x) + f(a+x) = 2b $$를 만족하는 $$ f(x) $$는 점 $$ (a, b) $$에 대칭인 함수다.[11] 나머지 하나의 손가락은 아시다시피 1997학년도 대학수학능력시험 수리영역 29번 집합 문제.[12] 보통 문제의 난이도를 고려할 때 계산이 더럽거나(보통 미적분 문제나 일부 공간도형 문제들) 접근방법이 까다롭거나(확통, 미적 고난도 문제들) 둘 중 하난데 여기는 둘다 해당돼서 아무리 잘 푸는 사람도 기본 5분넘게 걸린다.[13] $$\displaystyle \int \ln{x}\,dx = x(\ln{x}-1)+C$$
$$\displaystyle \int (\ln{x})^2\,dx = x \left\{ (\ln{x})^2 - 2 \ln{x} -2 \right\} +C$$
$$\displaystyle \int x \ln{x} \,dx = \displaystyle \frac{1}{2}x^2 \ln{x} -\frac{1}{4}x^2+C$$[14] $$\displaystyle \int \tan{x}\,dx = \ln\left| \sec{x} \right|+C$$
$$\displaystyle \int \cot{x}\,dx = \ln\left| \sin{x} \right|+C$$[15] $$\displaystyle \int xe^x\,dx = (x-1)e^x+C,$$
$$\displaystyle \int x^2e^x\,dx = (x^2-2x+2)e^x+C$$[16] $$\displaystyle \int x \sin{x}\,dx = -x \cos{x}+\sin{x}+C$$
$$\displaystyle \int x \cos{x}\,dx = x \sin{x}+\cos{x}+C$$[17] 덤으로 적분을 두 번 하여 같은 꼴을 유도해서 좌변으로 넘겨줘야 적분이 완료되는 함수도 있다. 사실 아래 제시된 두 적분은 해당 유형의 예고편에 불과하고, 대학교 미적분학에서 일명 Reduction Formula(e)로 불리는, 삼각함수의 거듭제곱 적분을 점화식으로 표현하는 것을 증명하고 이에 관한 합답형 문항을 푸는 것이 내신 단골 소재다.
$$\displaystyle \int e^x \sin{x}\,dx = \displaystyle \frac{e^x}{2}(\sin{x}-\cos{x})+C$$
$$\displaystyle \int e^x \cos{x}\,dx = \displaystyle \frac{e^x}{2}(\sin{x}+\cos{x})+C$$[18] 불가능하지는 않지만 조금 복잡한데, $$\csc{x}$$의 경우 $$\csc{x}+\cot{x}$$ 혹은 $$\csc{x}-\cot{x}$$를, $$\sec{x}$$의 경우$$\sec{x}+\tan{x}$$를 분모와 분자에 각각 곱해서 치환적분으로 푸는 트릭을 발휘하면 구할 수 있다.
$$ \begin{aligned} \displaystyle \int \csc{x}\,dx &= -\ln \left| \csc{x}+\cot{x} \right|+C \\ &= \ln \left| \csc{x}-\cot{x} \right|+C \end{aligned}$$
$$\displaystyle \int \sec{x}\,dx = \ln\left| \sec{x}+\tan{x} \right|+C$$[19] 대표적으로 2017 수능 수학 가형 20번[20] β-α=6루트3이라는 조건이 나와서 6의3제곱=216을 때려박아 맞춘 친구들이 많은데도 저정도다.(...) [21] 2016년에 치뤄진 교육청·평가원 모의고사 및 수능 기준으로 6월 모평 제외하고 개근. 2017년에 치뤄진 교육청·평가원 학평·모평에서는 9월 모평 제외하고 전부 출제되었다.[22] 이투스 기준 오답률 99.4%, EBSi 기준 오답률 97.0%[23] 2017학년도 수능 20번 문제가 대표적인 경우이다.[24] 사실 인수분해 공식을 응용한 문제다. 양변에 (4-2)를 곱하고 좌변의 (5+1)을 (4+2)로 고치면 쉽게 풀린다.[25] 수학Ⅰ(2015)[26] 미적분(2015)[27] 농담이 아니고 7차나 6차 교육과정 당시 삼각함수 문제들의 위엄을 보면 알 수 있다[28] 당장 평가원도 삼각함수에서 킬러 문제를 다시 출제하기 시작했다.
$$\displaystyle \int (\ln{x})^2\,dx = x \left\{ (\ln{x})^2 - 2 \ln{x} -2 \right\} +C$$
$$\displaystyle \int x \ln{x} \,dx = \displaystyle \frac{1}{2}x^2 \ln{x} -\frac{1}{4}x^2+C$$[14] $$\displaystyle \int \tan{x}\,dx = \ln\left| \sec{x} \right|+C$$
$$\displaystyle \int \cot{x}\,dx = \ln\left| \sin{x} \right|+C$$[15] $$\displaystyle \int xe^x\,dx = (x-1)e^x+C,$$
$$\displaystyle \int x^2e^x\,dx = (x^2-2x+2)e^x+C$$[16] $$\displaystyle \int x \sin{x}\,dx = -x \cos{x}+\sin{x}+C$$
$$\displaystyle \int x \cos{x}\,dx = x \sin{x}+\cos{x}+C$$[17] 덤으로 적분을 두 번 하여 같은 꼴을 유도해서 좌변으로 넘겨줘야 적분이 완료되는 함수도 있다. 사실 아래 제시된 두 적분은 해당 유형의 예고편에 불과하고, 대학교 미적분학에서 일명 Reduction Formula(e)로 불리는, 삼각함수의 거듭제곱 적분을 점화식으로 표현하는 것을 증명하고 이에 관한 합답형 문항을 푸는 것이 내신 단골 소재다.
$$\displaystyle \int e^x \sin{x}\,dx = \displaystyle \frac{e^x}{2}(\sin{x}-\cos{x})+C$$
$$\displaystyle \int e^x \cos{x}\,dx = \displaystyle \frac{e^x}{2}(\sin{x}+\cos{x})+C$$[18] 불가능하지는 않지만 조금 복잡한데, $$\csc{x}$$의 경우 $$\csc{x}+\cot{x}$$ 혹은 $$\csc{x}-\cot{x}$$를, $$\sec{x}$$의 경우$$\sec{x}+\tan{x}$$를 분모와 분자에 각각 곱해서 치환적분으로 푸는 트릭을 발휘하면 구할 수 있다.
$$ \begin{aligned} \displaystyle \int \csc{x}\,dx &= -\ln \left| \csc{x}+\cot{x} \right|+C \\ &= \ln \left| \csc{x}-\cot{x} \right|+C \end{aligned}$$
$$\displaystyle \int \sec{x}\,dx = \ln\left| \sec{x}+\tan{x} \right|+C$$[19] 대표적으로 2017 수능 수학 가형 20번[20] β-α=6루트3이라는 조건이 나와서 6의3제곱=216을 때려박아 맞춘 친구들이 많은데도 저정도다.(...) [21] 2016년에 치뤄진 교육청·평가원 모의고사 및 수능 기준으로 6월 모평 제외하고 개근. 2017년에 치뤄진 교육청·평가원 학평·모평에서는 9월 모평 제외하고 전부 출제되었다.[22] 이투스 기준 오답률 99.4%, EBSi 기준 오답률 97.0%[23] 2017학년도 수능 20번 문제가 대표적인 경우이다.[24] 사실 인수분해 공식을 응용한 문제다. 양변에 (4-2)를 곱하고 좌변의 (5+1)을 (4+2)로 고치면 쉽게 풀린다.[25] 수학Ⅰ(2015)[26] 미적분(2015)[27] 농담이 아니고 7차나 6차 교육과정 당시 삼각함수 문제들의 위엄을 보면 알 수 있다[28] 당장 평가원도 삼각함수에서 킬러 문제를 다시 출제하기 시작했다.