유로파(위성)

 





'''유로파
Europa / エウロパ / 木卫二'''
[image]촬영: Galileo Orbiter (NASA, 1997)
'''모행성'''
목성
'''구분'''
대형 위성
'''지름'''
3,121.6km(±1km)
'''표면적'''
3.09×107 km2
'''질량'''
(4.799844±0.000013)×1022 kg
'''평균거리'''
670,900km
'''궤도경사각'''
0.47°
'''이심률'''
0.009
'''공전주기'''
3.551181일
'''자전주기'''
조석 고정
'''자전축 기울기'''
0.1°
'''대기압'''
0.1 µPa (10−12 bar)
'''대기조성'''
산소 분자 및 산소 원자
수소 분자
'''최고온도'''
125K(−148°C)
'''최저온도'''
50K(−223°C)
'''평균온도'''
102K(−171.15°C)
'''겉보기 등급'''
5.29(의 위치)
'''표면중력'''
1.314m/s2
1. 개요
2. 상세
3. 생명체?
4. 탐사 계획
5. 대기과학해양학적 연구
6. 기타
7. 관련 문서

[clearfix]

1. 개요


'''유로파'''는 목성위성으로 갈릴레이 위성 중 하나이다.

2. 상세


전체 지름은 3,122km로 갈릴레이의 목성 4대 위성 중에서는 가장 작으며, 궤도 반지름은 목성 반지름의 9.40배이고 공전일은 3.55일이다. 두꺼운 얼음이 표면을 덮고 있어서 망원경으로 보면 태양계의 천체 중 가장 매끈하게 보인다.
한국에서는 '유로파'와 '에우로파'의 두 명칭이 혼용되어 사용되나 한국천문학회 등 전문성과 공신력을 갖춘 단체에서는 '유로파'라는 명칭이 주로 사용된다.
현재 태양계 내에서 지구 외 생명체 존재 가능성이 높은 곳 중 하나로 주목받는 곳이다.[1] 유로파는 지구와 가까우면서도 생명체 가능성이 높은 위성이니 관심이 쏠리는 건 어찌보면 당연하다.
토성의 소형 위성인 엔셀라두스 또한 유로파처럼 얼음 지각 아래 해양층이 있음이 확인되어 학계가 관심을 두는 타겟이지만, 유로파에 비교하여 더 멀리 위치해 있다는 점 때문에 탐사 우선 순위가 밀려 있다. 목성에 가는 데만 현재의 기술로 5년 이상 걸리는데 훨씬 먼 토성이야 두말 할 것도 없다.
유로파의 추정 단면도
위 링크의 사진을 보면 표면에 줄이 죽죽 그어져 있는 것처럼 보이는데 이는 수백~수천m 길이의 협곡으로 밝혀졌다. 또한 20~30km 두께의 얼음층 아래에는 '''100km가 넘는 깊이의 바다'''가 형성되어 있는 것으로 생각된다. 이 추측이 맞다면 유로파는 지구보다 2배나 큰 부피의 바다를 가지게 되어 태양계에서 액체 상태의 을 가장 많이 가진 천체가 된다.
이 얼음층이 목성의 조석력이나 이에 의한 유로파의 지열 등으로 균열이 생겼다가 이내 다시 얼어붙는데, 이 과정에서 얼음층 아래의 물이 분출되고, 다시 얼어붙어 협곡이 생성되는 것으로 추측되고 있다. 그리고 얼음층 중간에도 군데군데 민물이 형성되어 있을 것으로 생각된다. 유로파에서 지열이 발생하는 이유는 조석력에 의해 행성이 핵부터 뒤틀리기 때문에 생기는 것이다. 목성과 좀 더 가까운 이오에서는 화산활동이 일어나기도 한다.
참고로 지구상에서 가장 깊은 바다인 마리아나 해구의 비티아스 해연의 깊이가 11,034m, km로 환산하면 11km 정도이다. 깊이에서 부터 격이 다르다. 그러니까, 지구에서는 지표면에서 대기권을 100km 남짓 올라가면 우주지만, 유로파에서는 해저에서 물과 얼음을 100km남짓 올라가면 이제 겨우 지표이다.
[image]
한국 시간 2016년 9월 27일 3시에 NASA에서 유로파에 관한 중대발표를 했는데 (링크) 유로파의 빙하를 뚫고 나오는 물이 관측되었으며 수증기 기둥이 관찰되었다고 한다.
그리고 2019년 고더드 우주비행센터의 행성과학자 루카스 파가니니 박사가 이끄는 연구팀은 과학저널 '네이처 천문학(Nature Astronomy)' 최신호를 통해 유로파가 올림픽 경기장 규격의 수영장을 수분 만에 채울 수 있는 양의 물(초당 2천360㎏)을 내뿜는 것을 확인했다고 밝혔다.#
갈릴레이 탐사선 데이터 재처리 도중에 유로파 얼음 지각 나이가 의외로 상당히 최근인 4500만 ~ 9000만년 전이라는 흥미로운 발표를 하였다. #

3. 생명체?



'''얼음 밑의 외계 생명체'''[2]
목성이 뿜어내는 아주 강한 방사선과 추운 기후 때문에 표면에서 생명체가 살기는 어렵지만 얼음 아래에 바다가 형성되어 있다는 것은 생물체가 존재할 가능성이 있다는 이야기다. 지구의 남극 빙하 저 아래에서 적응해 온 미생물들이 발견되기도 하는 등 얼음층 밑 물층이라는 환경은 전 우주적 관점에서는 생명체에게 호의적인 환경 중 하나라고 할 수 있다.
사실 생명체가 발생했다는 것을 전제하면 발생한 생명체가 멸종할 가능성은 지구보다 훨씬 낮다. 감마선 폭발이나 천체 충돌과 같은 외부 유인에 의한 대규모 멸종의 가능성이 거의 없기 때문이다. 다만 이런 환경은 토착 지적 생명체가 문명을 건설하기 어려운 환경이라는 게 문제다. 자원 채굴이야 어찌저찌 한다고 쳐도 해저에서는 물질을 유용한 형태로 가공하기 위한 열원을 확보하는 것이 불가능에 가깝다. 그래도 인류 문명과 같은 발달한 외부 지적 생명체는 이러한 환경에 문명을 건설하는 게 아주 불가능하지는 않을 것이다.
한편 유로파도 지구와 비슷한 활동적인 지각을 가지고 있다는, 즉 내부가 뜨거운 천체일 가능성이 크다는 이야기가 있어 겉보기는 얼음 천체 같지만 바다 깊숙한 곳에는 열수분출공 등 지구의 심해와 비슷한 환경을 유지하고 있을 것이라는 가설이 많은 지지를 얻고 있다. 지구에서도 이 심해의 열수분출공 주변에 다세포 생물이 발견되고 있으므로, 유로파의 심해열수공에서도 다세포 생물이 발견될 가능성은 얼마든지 있다는 것이다. 다만 물층이 20km나 되는 얼음 이불을 덮고 있어서 근시일 내에 찾기는 힘들 듯하다.
표면의 얼음 협곡은 '''아래층의 대류현상'''에 의해 만들어진 것이기에, 만약 바다 아래에 유기물이 형성되었다면 이 협곡에서 다량의 유기화합물을 찾을 가능성이 크다고 한다. 참고
유로파 탐사를 반대하는 사람들도 있는데, 이들이 주장하는 건 유로파에 생명체가 있다면, 유로파의 생태계는 거의 완벽하게 '''닫힌 생태계'''라는 것이다. 지구의 탐사선이 유로파의 얼음을 뚫고 들어간다면 탐사선에 묻어간 지구의 세균과 바이러스들이 유로파 내의 생태계에 어떤 영향을 끼칠 지 알 수 없다는 것. 대부분이 액체 바다로 이루어진 유로파의 환경 특성상 세균류 등의 생명체는 조건만 갖춰진다면 그 확산 속도는 상상을 초월할 것이다.
비슷한 사례로 대항해시대 당시 유럽인아메리카 원주민서로에게 내성이 없는 질병을 교환하며 상호간에 대규모 인명피해를 본 사례가 있다. 이걸 행성 내지 위성 단위로 재현하게 되면 지구 생명체 입장에서나 외계 생명체 입장에서나 뜬금없이 찾아온 코즈믹 호러가 되는 셈이라는 것이다.
이런 관점을 대표적으로 보여주는 것이 아서 C. 클라크2010으로, 인류를 초월한 고등 지적 생명체가 인류에게 다른 모든 태양계 천체들의 소유를 허락하면서도 유로파만큼은 예외로 착륙을 불허한다. 모노리스의 보호 덕분에 유로파 생명체들은 인류의 영향 없이 독자적으로 진화를 거쳐나가고 마침내 태양계의 두 번째 지적생명체로까지 진화를 이룩한다는 이야기이다.
하지만 어디까지나 같은 행성 기반으로 번성한 생명체들이 교역을 통해 전파된 경우인 대항해시대의 경우와 달리, 지구와 유로파는 기온이나 대기, 액체의 화학적 구성을 비롯한 환경 기반 자체가 극도로 다르므로 이 다른 기반의 환경에서 발생한 생명체들이 서로 다른 환경에서 적응 가능할지의 여부 자체가 미지수이며, 지구 미생물이 유로파로 유입된다 한들 지구와는 심각하게 다른 환경에 적응하지 못하고 조용히 전멸할 가능성도 있다. 바이러스나 세균같은 감염증상의 경우도 마찬가지로 유로파의 바이러스나 세균이 지구 생명체에 감염이 될 정도로 서로간의 구조가 호환이 될지조차도 알 수 없다. 물론 어느 가능성도 확답을 내리기는 어려우므로 처음부터 탐사 계획을 조심스럽게 진행하여 그런 상황이 생기지 않도록 하는 것이 가장 확실하고 안전할 것이다.
이 기사에 따르면 유로파 탐사 연구가 시작될 무렵 생존해있던 아서 C. 클라크NASA 과학자들과의 만남에서 유로파 착륙을 '허락'해줬다는 카더라가 있다.

4. 탐사 계획


참고로 2016년 하반기 현재 탐사 미션의 정식 명칭은 Europa Multiple Fly-by Mission이지만 NASA가 이 긴 이름을 고수할리는 없다. 유로파 클리퍼는 프로젝트 입안 초기에만 쓰였지만 언론에서 2016년 현재도 가장 많이 부르는 이름이고 개칭 이후에는 유로파 플라이바이라고 불리는 편이고 전부 나중에 가서는 바뀔 이름이라고 그냥 유로파 미션이라고 부르기도 한다. NASA의 공식 트위터 계정은 유로파 미션(@NASAEuropa)으로 칭하다가 프로젝트명 환원 후 NASA Europa Clipper로 공식 계정명을 바꿨다.
NASAESA(유럽 우주 기구)에서 생명체를 탐사하기 위한 계획이 있었으나, 예산 부족으로 모두 중단되었다 . 만일 계획이 실현된다면 2020년 이후에나 가능할 듯. 이 계획에서 가장 큰 문제점은 현재 인류의 기술로는 오염 없이 유로파 밑의 수km~수십km의 얼음을 뚫고 바다를 탐사하는 게 불가능하다는 것이다. 현재의 기술로 지각을 가장 깊이 판 것이 약 10km 남짓이며 이것조차도 주변 오염을 전혀 고려하지 않고 뚫은 것이 그 정도다.
하지만 2011년 미국의 10개년 행성과학 여론조사에서 유로파 연구가 추천되고부터 NASA가 적극적으로 유로파 탐험을 준비하기 시작했다. 초기에는 근접 통과 조사와 위성 궤도진입 계획을 추진했는데 현재는 착륙까지 하는 계획이 추진 중이다. NASA는 일단 쉽고 돈이 적게 드는 근접통과 조사 계획부터 차근차근 추진하기를 원한다. 일명 '''유로파 클리퍼'''라고 불리는 유로파 멀티플 플라이바이 미션이 바로 그것이다.
그런데 돈줄을 쥐고 있는 미국 의회에서 더 안달이 나서 2015, 2016년 NASA가 요구한 유로파 탐사 예산의 10배인 한화 약 2천억 원 상당의 1억 7500만 달러씩이나 쥐어주고 있다. 그 대신 최소 5년이나 걸리는 그 먼 길을 가서 그냥 둘러만 보고 지나갈 거냐며 반드시 유로파에 "착륙"을 포함하도록 못박고 있다. 특히 NASA의 예산을 심의하는 하원 예산준비 소위원회의 위원장 존 컬버슨 상원의원(텍사스, 공화당)이 유로파에 단단히 꽂혀 있는 상황.
하지만 NASA는 일단 먼저 더 상세히 조사해봐야 제대로 착륙을 할 수 있다며 난색을 표시하고 있다. 한편으로는 일단 이렇게 착륙을 할 것이라면 사실상 SLS급의 슈퍼헤비급 발사체가 필요하다. 이에 따라 SLS의 지지자들 역시 SLS의 일거리가 늘어날 유로파 착륙을 강력히 지지하고 있다. 물론 SLS가 가는 곳이 어디던 경쟁자 스페이스X팰컨 헤비는 거머리처럼 따라붙을 테지만.
참고로 거대 행성에 가서 위성 착륙선과 오비터를 써먹는다는 개요는 상술한 카시니-하위헌스 미션과 같다. 문제는 유로파 미션은 전부 NASA가 만드는 우주선이라는 거. 이른바 우라누스 패스파인더로 불리는 천왕성 탐사 미션 역시 비슷한 개요로 SLS 발사가 점쳐지고 있는데, 여기서도 마찬가지로 오비터와 프로브를 같이 보낼 예정이다
[image]
아틀라스 V 551 발사시의 궤도와 SLS 블록 1B의 발사 시나리오. 저 아름다운 다이렉트 비행을 실행한다면 3년도 넉넉히 잡은거고 최단 '''1.9년'''까지 단축된다. 또한 가운데 부가 설명에서 알수 있듯이 금성의 핫한 대기를 살짝이라도 건드릴 필요조차 없고(nuclear safety concern은 지구 fly by 때 사고가 벌어져서 핵전지가 지상(특히 인구 밀집지역)에 낙하할 위험에 대한 얘기다.) 페이로드 중량 상한선도 확 올라간다.
2016년 기준으로는 일단 '''착륙선 포함 SLS 발사'''라는 무시무시한 패키지로 확정되는 분위기다. 이걸로면 주노가 6년간 스윙바이를 거친 길을 3년 이내에 주파하여 유로파를 탐사하고 착륙도 할 수 있으니 좋은 것이다. 하지만 정작 2017년 회계년도 NASA 예산 안에서 탐사선 연구예산이 싹둑 잘려나가는 등 앞으로도 순탄치만은 않다.
대신 착륙선까지 달아야 하니 플루토늄 238 연료를 쓰는 원자력 전지는 포기했다. 주노가 순항하는걸 보면 재검토도 없을 듯 보인다. 2010년대 중반 기준으로 NASA가 쓸 수 있는 플루토늄 238 전지는 5개뿐인데, 큐리오시티를 이을 차세대 화성 탐사 로버 퍼서비어런스에 하나가 들어갈 것이 확정되어 있으므로 실질적으로는 4개만 남아있는 상황. 글자 그대로 금쪽보다 귀하신 몸이다. NASA에서는 천왕성 탐사선조차 원자력 전지를 넣는 문제로 고심이 많은 판국에 고작(?) 목성 탐사선에서 원자력 전지를 욕심내는 것은 무리다.
2016년 9월 말 NASA가 유로파 관련 중대발표 일정을 발표했다. 스포일러로 생명체 발견 아니라고 누누이 강조를 했는데 그 결과는 엔셀라두스에서 카시니가 봤던 것과 비슷한 '''물기둥 분출''' 관측에 대한 것이었다. 허블 우주 망원경STS-125에서 업그레이드한 자외선 관측 능력을 만땅으로 활용하여 일궈낸 승리이며, 유로파 플라이바이 미션은 물론 지름 1미터짜리 착륙선에 들어갈 장비를 고르고 있는 2016년의 현 상황에서 미션 개요에도 상당한 영향을 끼칠 전망이다.
2017년 2월 기준으로는 유로파 플라이바이 탐사선과 랜더는 SLS로 '따로' 발사하자는 아이디어가 지지를 받고 그 쪽으로 콘셉트 스터디가 진행되고 있다. 하지만 이건 또 문제인게 그럴거면 꼭 SLS를 쓸 필요가 있냐는 반론이 나온다. SLS가 좀 비싼게 아니다보니 같이 쏴야 한다는 주장도 여전히 나오고는 있다만 도널드 트럼프 집권 후에는 NASA의 과학 연구 부문이 높으신 분들에게 함부로 토를 달기 애매한 분위기가 되었다.
2016년 궤도에 진입한 주노는 유로파를 비롯한 목성의 위성 탐사와 무관하지만 경험 축적 및 예기치 않은 발견에 대비하고 업무상 협력 차원에서 일부 연구진이 주노 팀에서도 근무하고 있다.
2020년대 ESA 역시 JUpiter ICy moon Explorer, 이름하야 '''JUICE''' 탐사선을 보낼 계획이지만, 이 미션의 경우 '''가니메데'''를 탐사할 계획이고 유로파는 플라이바이 잠깐 해보는 정도이다. 대신 가니메데는 여러 번 플라이바이하는 수준을 넘어 가니메데를 공전한다. 그리고 아리안 5로 쏘다보니 몇 년 이상 장기 비행이 불가피하기에 1.9년이라는 터무니없는 기간으로 유로파에 도달하는 NASA 유로파 탐사선에 비해 상당히 늦게 본격적인 연구가 시작될 전망이다.

NASA JPL의 Von Karman Lecture 2014년 6월 강연에서 유로파의 바다에 대해 이야기했다. 참고로 엔셀라두스, 타이탄 등 다른 곳들도 언급한다. 남극에서 유로파 탐사장비를 테스트하는 모습도 보인다. 2014년 기준 프리젠테이션이므로 물기둥 분출이 관측된 2016년 시점에서는 영상에 나온 것들보다도 더 발전된 연구가 진행 중일 것이다.
2017년 3월 10일 예상대로 NASA에서 플라이바이 탐사선의 정식 프로젝트명을 '''유로파 클리퍼'''로 환원했다. 하지만 이로부터 얼마 지나지 않아 도널드 트럼프 행정부에서 2018 회계년도 NASA 예산안에서 '''착륙선 펀딩 중단 및 폐지''' 의사를 드러내며 우주덕과 과학자들이 공포에 떠는 중이었다. 다행히 유로파 착륙선에 관해서는 연구를 좀 더 심도있게 진행하자는 선에서 의견조율이 이뤄진 채 보강 연구가 꾸준히 진행되고 있어 취소 걱정은 미뤄도 될 것으로 보인다. 먼저 클리퍼가 최대한 유로파를 샅샅이 살핀 뒤 착륙하기 좋은 곳을 간택하는 방식으로 진행될 것으로 보인다. 반면 소행성 궤도변경 미션은 정말로 폐지되었다.
2018년 미국 중간선거에서 유로파 클리퍼의 열렬한 지지자였던 존 컬버슨 의원이 NASA까 성향의 민주당 리지 플레처 후보에 패하며 '''낙선'''함에 따라 유로파 탐사 일정, 그리고 SLS의 장래에 먹구름이 끼었다.# 유로파 착륙선 계획은 강력한 지지자를 잃었고 NASA 내에서도 지나치게 서두른다고 반대하는 의견이 많아서 일단 근접 플라이바이부터 제대로 성공하고 차근차근 추진하자는 의견이 힘을 얻고 있다. 이 경우 착륙선 계획은 2040년대로 미뤄지게 된다.

5. 대기과학해양학적 연구


실질적인 데이터나 표본이 발견되기까지는 장님 코끼리 만지기가 될 수밖에 없는 우주생물학과는 달리 외계 행성에 대한 지구과학적 접근을 통한 연구는 서서히 시작되고 있다. 유로파가 바다 위성이고 탐사선을 통한 최소한의 관측 데이터는 존재하니, 탐사선들이 알려 준 유로파에 대한 정보를 그동안 만들어온 지구대기과학해양학 모델에 올려보는 것.
유로파의 얼음층 아래 해양 순환은 어떻게 일어날 것이며 위성 외부와의 열교환 및 열평형은 어떻게 일어날지, 유로파의 얼음층 및 해저의 온도와 밀도 분포가 어떤 식으로 이루어져 있어야 탐사선이 관측한 물기둥을 만들어 낼 수 있을지에 대한 개략적인 모델링을 해보는 연구들이다.

6. 기타


고대 그리스 신화에우로파와 어원이 같은데도 이상할 정도로 유럽에서는 이 위성에 대해 관심이 없으며, 유로파에 대해 다루는 대중매체들은 대부분 미국, 일본에서 만든 작품들이다.
관련 영화로 SF스릴러 유로파 리포트(Europa Report, 2013)가 있다. 사실적인 SF우주덕이라면 한번 볼 만한 수작이다. 페이크 다큐멘터리 형식이며, 유로파에서의 탐사를 그리고 있다.
[image]
2013년 12월 13일. 유로파 표면에서 분출하는 물기둥을 발견했다. 확실히 바다가 존재하는 게 맞는 듯.

7. 관련 문서



[1] 2020년 기준 금성, 화성, 엔셀라두스, 유로파 네 곳이 천문학/천체물리학자들, 또한 미국, 유럽, 러시아의 우주 항공 관련 기관들이 진지하게 미생물의 존재 및 향후 탐사 가능성을 토론하고 있는 행성위성들이다.[2] 쿠르츠게작트의 영상.