CERN

 

[image]
홈페이지
1. 개요
2. 호칭
3. 상세
4. 둘러보기
4.1. 방문하기
4.2. 몇 가지 팁
5. 업적
5.1. W, Z 보존의 발견
5.3. 힉스 입자
5.4. Scientific Linux
6. 소동
6.1. 초광속 입자 발견 소동
6.2. 새로운 입자?
6.3. 기타 소동
7. 기타
8. 창작물에서의 CERN
8.1. 관련 문서


1. 개요


유럽 입자 물리 연구소(Organisation Européenne pour la Recherche Nucléaire)다. CERN이란 이름은 구명인 Conseil Européen pour la Recherche Nucléaire에서 따왔으며, 더이상 두문자를 풀지 않고 약칭을 그대로 인정하여 CERN의 형태로만 쓴다.[1]

2. 호칭


NASA와 달리 호칭이 명확하지 않아 다양하게 불린다.
영어로는 선([sɜːɹn])이라고 읽는다. 국가에 따라 "세른"이라고 읽는 경우도 있다.
일본에서는 '세른'으로 많이 읽힌다. CERN의 일본 위키피디아에도 サーン(선)과 セルン(세른) 두 가지 읽기 방식이 있다고 명시되어 있다. 프랑스 발음에 준거한 것으로 생각되는데, 실제로 영문 위키피디아에서는 프랑스 발음을 /sɛʁn/이라 표기하고 있으며, /ʁ/을 ら행으로 옮기는 관례에 따르면 얼추 맞다고 할 수 있다. 실제 유럽입자물리연구소에서 일하는 한국과학자들도 세른이라고 자주 부른다.실제 발음 예(참고) 다만 본토에서 들으면 미묘하게 다른 게, 프랑스 북부에서는 R을 '흐' 비슷하게 읽는 게 있어서 그렇다.[2] 실제로 현지 버스나 트램을 타고 가다 안내 방송을 들으면 '세흔' 비슷하게 들린다.
독일에서는 체른이라고 읽는다.

3. 상세


제네바 근교 스위스-프랑스 국경에 위치한 유럽연합의 연구소로, 소장은 2018년 현재 파비올라 자노티(최초의 여성 소장) 박사이며 이 연구소에 지상 최대크기의 LHC가 위치해 있다. 최첨단 기술이 몰려있는 곳으로, NASA가 거시세계의 선두주자라면 CERN은 미시세계에서의 선두 주자이다. NASA는 그 특성상 미군이나 CIA, NSA 등과 밀접한 관계가 있다. 미국의 안보와 관련된 사항이 너무 많은지라 너무 알려다간 코렁탕을 못 면한다. 외국에서 온 석박사급 인재들도 민감한 주제에 있어서는 영주권으로도 모자라 아예 국적을 취득해야 제대로 일 할 수 있을 정도. 그래도 적성국가 출신 이민자라든지 출신 성분이 미심쩍으면 국적을 취득해도 까다롭다. 그에 반해 CERN에서는 유럽 국가 뿐만 아니라 유럽 밖의 다양한 국가의 과학자들이 다양한 방식으로 연구에 참여하고 있다. 연구 인력 제공 뿐만 아니라 펀딩, 부품 제작 및 조달[3]에 이르기까지 실로 다양하다. 국제적 관계[4]와 펀딩 규모에 따라 회원국, 준회원국, 옵저버(observer), 그리고 단순 참여 국가로 실험 참여 국가들을 분류할 수 있으며, 그 수가 실로 어마어마하다.
이름에서 볼 수 있듯이, 입자 물리학을 연구하는 곳으로 여기에 있는 가속기를 이용해서 여러가지 발견을 한다. 여기서 한 발견들로 인해서 여기서 근무하던 과학자들은 노벨물리학상을 몇 번이나 탔다.
유럽연합에서 운영하는 것이지만, 유럽이 아닌 다른 국가에서도 실험에 참여하기도 한다.
대한민국의 경우, 현재 비회원국의 지위로 이 연구소의 실험에 참가하고 있으며, 140여 명의 대한민국 과학자들이 이 연구소의 각종 연구에 참여하고 있다. 한국은 CERN 연구에서 국제 발표 기준으로 미국, 독일, 이탈리아, CERN에 이어 다섯번째로 활발한 성과를 내고 있다. 이에 CERN에서는 한국을 준회원국으로 승격시키고 이에 맞는 연구비 기여를 요구하고 있다. 하지만 한국에서는 추가적인 연구비 부담 때문에 비회원국으로 만족하는 상황이다. 정부로부터 추가적인 연구비 지원을 받지 못하는 상태에서 준회원국이 되어 더 많은 연구비 기여를 강요 받으면 자칫 연구원들의 활동에 지장을 받기 때문이다. 한국의 경제적 위상과 CERN 내 한국 과학자의 기여를 생각하면 매우 아쉬운 부분이다. 준회원국으로 한국의 지위가 올라가면, CERN 관련 사업에 한국 기업이 참여할 수 있고, 한국 과학자들의 위상이 높아진다. 그러나 상대적으로 자연과학을 등한시하는 한국 정부를 보면...

4. 둘러보기


[image]
CERN의 상징인 Globe와 sculpture이다. Sculpture에는 과학 역사 상 가장 유명한 문구들과 공식들이 시간 순서 대로 써져 있다. 고대 이집트 시절부터 거슬러 올라가는데, 따라 가다 보면 피타고라스 정리는 물론 근의 공식, 뉴턴의 운동법칙, 푸리에 변환, 맥스웰 방정식, 주기율표, 상대성 이론, 슈뢰딩거 방정식을 거쳐 최후에는 표준 모형힉스 매커니즘이 등장한다. 이 상징물들은 방문객들을 위한 것으로 CERN의 메인 단지인 Meyrin[5] site와 (트램을 포함한) 도로 하나를 사이에 두고 떨어져 있다. 일반인들이 보기에 흥미롭도록 입자물리에 대한 내용들을 전시해 놓고 있고 메인 단지 입구 쪽에 있는 reception에도 전시관과 기념품샵이 있다.
[image]
W와 Z 보손 발견의 주역을 맡았던 검출기. 옛날 SPS에 설치되어 있었던 것이 지금은 해체되어 reception 야외 전시장에 진열되어 있는 중이다. 외형이 마치 우주선 같이 생겼다. [6] 그 외에도 입자물리 역사에서 한 가닥 했던 검출기와 작은 가속기들 중 다수를 여기에서 볼 수 있다. 한편 reception의 실내 전시관에는 현재 운영 중인 LHC의 4대 검출기(ATLAS, CMS, ALICE, LHCb)를 위한 전시장도 있다.
특별한 절차를 거치지 않은 일반인이 들어갈 수 있는 곳은 여기까지다. reception 곳곳에 게이트가 설치되어 있는데, CERN ID 카드가 없으면 못 들어간다. 이렇게 외부인이 별도의 절차[7] 없이 그냥 들어갈 수 있는 곳은 CERN 전체의 극히 일부에 지나지 않는다.
[image]
CERN의 Meryin site 전경이다. 하단에 Globe가 보이는데, Globe 옆을 지나는 긴 도로 왼쪽 편에 있는 단지 전체가 Meyrin site이다. 한편 Globe 오른쪽에도 작은 단지 하나가 보이는데, 바로 여기가 LHC의 ATLAS 검출기가 있는 곳이다. 물론 본체는 지하 깊숙한 곳에 묻혀 있으며 위로 보이는 건물들은 부속 건물이다. 저 안에 LHC는 없다. LHC는 바로 옆 ATLAS 부지 밑을 지나 반대쪽으로 크게 돈다. LHC의 가속기와 검출기는 지하 깊숙히 묻혀 있어서 밖에서 보이지 않는다. LHC 위에는 별다른 시설이 없고 심지어 일반 부지에 지나지 않는다. 지하철을 연상하면 이해가 갈 것이다.
매우 많은 건물들이 촘촘히 박혀 있다. 배치도 정돈되어 있지 않아서 방문자는 십중팔구 헤매기 십상이다. [8] 순수 물리학의 최첨단을 연구하는 곳 치고는 생긴 모습이 공단 같이 생겼다. 몇몇 곳에서 묘사한 모습과는 무척 다른 모습. 하지만 이곳은 실험물리를 하는 곳이고 세계에서 가장 거대한 실험장비를 '''만들고''' 굴리는 곳이니까 공장 같아 보일 수 밖에 없다. 또 7~80년 대에 지어져 있는 건물들이 아직도 있다. 심지어 슬레이트 지붕을 쓰는 건물도 많다.[9]
그래도 비교적 최근에 지어진 건물들은 꽤나 멋있게 지어 놨다. 대표적으로 R1 (메인 빌딩: 500동), R2 (504동), 그리고 40동(ATLAS, CMS 빌딩). 여기서 R은 레스토랑(Restaurant). 즉, 식당을 말한다. 대외적으로도 R1과 40동의 사진들이 많이 쓰인다. 특히 R1 앞에는 입자물리학 덕후라면 한 번 쯤 봤을 파란 파이프가 있고 40동에는 ATLAS와 CMS의 reception이 있다. 그런 점들 때문인지 밥 시간이 아닌 데도 R1에 상주하며 커피 한 잔과 노트북을 끼고 앉아 일하는 사람들이 제법 많다. 한편 이들 건물에서는 공짜는 아니지만 제법 저렴한 가격으로 양질의 커피를 즉각 공급받아 빨(...) 수 있다. 무인 커피 머신도 많이 구비되어 있는데, 식당에도 모자라 곳곳에 네스프레소 자판기도 구비되어 있다. 연구에 몰두하는 물리학자들을 무더기로(...) 보고 싶으면 여기도 가 보도록 하자.
CERN의 Meyrin site를 주로 설명했는데, 물론 다른 site도 있다. 그 중 하나로 옆 동네에 Prevessin site가 있다. Meyrin site가 메인이고 더 크지만 여기에서도 중요한 연구들이 진행되고 있다. R3(세번째 레스토랑)은 이 단지에 있는데 한 번 들러보는 것도 좋다. Prevessin site에서는 주로 검출기 조립과 검사가 이루어 진다. SPS을 이용한 테스트빔을 이용할 수 있기 때문이다. 그래서 Meyrin site에 비하면 Prevessin site은 훨씬 더 공장 같은 느낌을 준다. 실제로 공장이기도 하고. 여기서도 한국 연구자들이 열심히 검출기를 만들고 있다. 참고로 Meryin site가 스위스에 있는데 반해 Prevessin site는 프랑스에 있다. 그래서 여기는 스위스 프랑이 아닌 유로를 쓴다는 걸 유의할 필요가 있다.
또한 위에서 언급한 ATLAS 단지도 있고, 다른 세 개의 검출기(CMS, ALICE, LHCb)들 각각의 단지들도 여기저기 떨어져 있다. 다만 그 외에도 유럽은 물론 세계 각지의 연구소 및 대학에서 CERN과 협력 관계를 가지고 공동 연구를 진행하는 중에 있다. 우리나라의 KCMS와 KoALICE가 그 예이고, 이들 산하에도 수많은 대학들이 있다.

4.1. 방문하기


일반 방문객이 들어갈 수 없는 곳에 들어가기 위한 크게 두 가지 방법이 있는데, 하나는 CERN에서 제공하는 가이드와 함께 다니는 것이고, 두번째는 CERN 연구진에게 부탁해서 visitor card를 받는 것이다. 전자는 CERN 연구진에게 개인적으로 부탁할 필요가 없는 단순 투어(tour)이다. 개인 혹은 소수 (~11명) 관람은 최소 3~15일 전에 신청해야 하며, 더 많은 사람들의 단체 투어라면 관련 옵션이 있다. 물론 영어를 할 줄 알아야 신청부터 가이드 받는 것까지 문제 없이 소화할 수 있을 것이다. 두번째 방법은 물론 개인적으로 아는 CERN 연구진이 필요하다. 이건 딱히 가이드가 없는 대신 (물론 그 연구진이 해 줄 수도 있다) 상대적으로 더욱 자유롭다. 혹시 아는 연구진이 있거든 잘 부탁해서 visitor card를 받아 보자. 지금 이 글을 읽고 있는 사람이 부탁받은 CERN 연구진이라면 이 링크에 들어가서 신청을 할 수 있을 것이다. 이건 발급 받기 48시간 전에 신청을 해야 하며 신청한 연구진이 (최소한 입장 전까진) 동행해야 한다는 점을 유의하도록 하자. 다만 내친 김에 그 연구진에게 가이드를 부탁하는 것도 좋을 것이다.
위 절차를 밟아도 갈 수 없는 곳은 많다. 우선 개인 사무실은 당연히 못 들어간다. 또 핵 및 입자물리를 다루는 연구소이다보니 곳곳에 방사능 주의 딱지가 붙어 있는 곳들이 많고, 이런 곳은 CERN ID 카드 있는 사람도 추가적인 절차를 밟지 않으면 못 들어가는 곳이다. CERN Meryin site는 그렇다 쳐도 ATLAS, CMS, ALICE, LHCb 같은 4대 검출기라든가 LHC 파이프가 있는 지하는 못 들어간다. 4대 검출기 외부 시설, 즉 지상 건물 등도 따로 신청하지 않으면 CERN ID 카드 있는 사람도 들어가기가 어렵다. 지상 시설에 어떻게 갈 수 있다 해도 지하는 LHC가 가동 중이면 아예 못 들어간다. 방사능 천지이기 때문이다. 가동 중지 상태라고 해도 짧게 (2~4주) 점검 하고 다시 돌리기 바쁘기 때문에 보수 인원을 제외하면 들어갈 수 있는 사람이 없다.
다만 그 지하에 들어갈 수 있는 기간이 있는데, 바로 long-shutdown (LS) 기간이다. 예를 들어 2018년도 가동을 마지막으로 Run II 가동이 종료되고 두번째 LS가 시작되었는데, 그 기간이 2019년 1월~2020년 12월 마지막 날까지이다. 그리고 이 LS 기간 동안에는 특별히 정비 인원 말고도 다른 연구진은 물론 일반인도 지하로 내려가서 구경할 수 있다.물론, 따로 신청을 해야 내려갈 수 있다. 심지어 연구진도 일반인처럼 신청해야 갈 수 있다. 어느 검출기이든 1주 전에 신청해야 한다.
ATLAS
CMS
ALICE
LHCb
하지만 그마저도 코로나-19의 영향으로 인해 reception을 포함한 모든 시설로의 출입이 전면통제된 상황이라 입장이 불가능한 상황이다. 2020년 안에 통제가 풀릴지도 미지수인데 2021년에 재가동이 예정되어 있으니 검출기 방문은 사실상 다음 LS 기간이 오기 전까지 불가능한 상황이 되었다.

4.2. 몇 가지 팁


한편 장래 진로로 CERN에서 입자물리를 연구하고 싶다면 가장 좋은 방법은 CERN과 협력하는 연구소 혹은 대학에 들어가는 것이다. 물론 해외 유수의 대학으로 들어가는 것도 방법이겠지만 굳이 그러지 않아도 우리나라 대학교 중 KCMS와 KoALICE와 일하는 연구실이 있는 학교로 들어가 대학원에 가도 된다. 주의할 점은 해당 대학교 대학원에 들어가서 공부한다고 CERN 소속이 된다고 말하기는 어렵다는 것이다. 소속은 여전히 해당 대학교. 그리고 엄연히 CERN에 소속된 박사/교수/엔지니어가 따로 존재한다. CERN에 직속으로 소속되는 것은 그야말로 하늘에 별따기로 입자물리 전공자 혹은 관련 분야에서 연구를 지속해야 기회가 생긴다.[10]
CERN 실험 결과로 나오는 논문들에 이름을 싣는 건 그렇게까지 어려운 일이 아니다. 소위 authorship이라는 걸 받으면 이름이 실린다. 이 authorship은 소속 연구실에서 서비스 워크(service work)를 하고 어느 정도 인정을 받으면 얻을 수 있다. 서비스워크는 보통 검출기가 받은 데이터를 고치든가 검출기의 성능향상을 한다든가 등등의 일들을 말한다.[11] 그렇게 일을 하면 해당 검출기의 collaboration에 이름이 올라가게 된다. 예를 들어 CMS와 같이 일하는 실험실에서 CMS 서비스워크를 잘 수행하면 CMS Collaboration에 이름이 올라가게 되고, CMS Collaboration 이름[12]으로 나오는 논문들에 본인의 이름이 올라가게 되는 것이다. 실제로 저자명이 The (검출기 이름) Collaboration이라고 되어 있는 논문을 보면 맨 뒤 스무 페이지 가량이 authorship을 받은 사람들의 이름으로 도배가 되어 있음을 볼 수 있다. 입자물리에 로망이 있는 사람이라면 굳이 CERN에 직접 소속되지는 않더라도 이런 논문에 이름을 싣는 것만으로도 가슴 벅찬 일이 될 것이다. 최근 들어 참여 연구진이 늘어난데다 많은 영역들이 자동화되어 가면서 authorship 받는 게 더 어려워지고 있다지만 여전히 기회는 크다.
다만 주의할 점은 이들처럼 입자'''실험'''물리를 연구하는 곳에서 입자'''이론'''물리를 본격적으로 잘 다루지는 않는다는 것이다. 모르면 안 되지만 '''이론을 제대로 연구'''하기 위한 정도까지는 취급하지 않는다. 더군다나 대부분의 커리큘럼에서 표준모형까지만 다루고 표준모형 너머의 이론들은 잘 안 다룬다. 주의하자. 예를 들어 초끈이론이 멋있어 보여 입자물리에 들어가려고 하는 학생이 입자'''실험'''물리 연구실에 들어가서 끈 이야기를 꺼내는 순간 선배들 포닥들 교수들이 끈이론을 대놓고 비웃는 걸 보고[13] 충격먹을 수 있다.
방문하고 싶은 사람들 혹은 이곳에 연구목적으로 머물 사람들을 위한 몇 가지 팁을 소개한다. 스위스, 그 중에서도 특히 제네바의 물가는 세계 최고 수준이며 이는 CERN에서도 예외 없이 적용된다. 그나마 좀 더 싸긴 하니까 예외라고 칠 수도 있겠지만. 더군다나 이곳은 스위스 프랑'''만''' 취급하기 때문에[14] 굉장히 불편하다. 물론 스위스에만 잠깐 있다가 갈 생각이면 덜 골치가 아프겠지만, 스위스만 여행하는 게 아니라든가 오랫동안 머물 예정이면 이야기가 달라진다. 우선 숙소는 CERN 호스텔에서 묵는 게 아니면 상제니(Saint-Genis)나 페르니-볼테흐(Ferney-Voltaire[15])에 있는 곳으로 잡는 게 좋다. 찾아 보면 알겠지만 이 두 곳은 '''스위스가 아니라 프랑스에 있는 지역들'''이다. 불과 국경 하나 차이로 제네바의 살인적인 물가와 동떨어진 지역이다. 게다가 솅겐 조약 덕분에 스위스-프랑스 국경 넘나드는 건 전혀 문제가 안 된다.[16] 실제로도 출장 나온 연구원들은 이 두 지역에 숙소를 잡고 생계를 이어가곤 한다. 물론 밥을 포함한 생필품은 근처 대형 마트에서 주로 해결한다. 참고로 보통 '까르푸'로 가는데, 두 지역 다 보유하고 있다. 잠깐 온 여행객들도 제네바 숙소가 너무 부담스러우면 이 두 곳 중 하나에 숙소를 잡는 것도 한 방법일 것이다. 불행하게도 이 지역들은 그냥 시골이라서 뭐가 없다. 그래서 이 지역들 안에서 생필품 이상의 것들을 사기에는 다소 어려움이 있을 수 있겠다. 다행히 제네바로 갈 필요는 없는데, 차 타고 멀지 않은 곳에 또아히(Thoiry)라는 동네로 가면 더 큰 쇼핑몰(Val Thoiry)이 있다. 68번 버스를 타고 쭉 가도 된다. 단, 가끔 상제니 종점 버스인 경우가 있으니 행선지를 잘 보고 타야 한다.

5. 업적



5.1. W, Z 보존의 발견


CERN은 입자물리 분야에서 어마어마한 양의 업적들을 남겼고 지금도 계속 남기고 있다. 하지만 그 중에서도 최고 업적을 꼽으라고 하면 힉스 보존의 발견과 더불어 W, Z 보존의 발견을 꼽을 수 있겠다. W, Z 보존은 약력을 매개하는 입자로, 질량이 각각 80.4 GeV, 91.2 GeV에 이르는 매우 무거운 입자들이다.[17][18] 이 무시무시한 질량은 사실 약력이 왜 '약한가'에 대한 결정적인 이유이다. 반응 중간에 생성되는 입자의 질량이 반응 전체의 총 에너지에서 많이 벗어나 있으면 벗어나 있을 수록 그 반응이 일어날 확률, 혹은 그 반응의 세기가 급격히 작아지는데, 보통 우리가 아는 약력 반응인 원자핵의 베타 붕괴 과정에 들어가는 에너지는 이들 보존들의 질량에 비하면 턱없이 작기 때문에 약력이 약한 것으로 보이기 때문이다.
거꾸로 말하자면, 만약 W, Z 보존의 질량에 해당하는 에너지를 한 점에 집중시키면 약한 상호작용이 강하게 일어나는 것을 볼 수 있을 것이다. 한편, 그 질량 주변에서만 세기가 급격하게 증가한다는 것은 어떤 피크(peak) 혹은 공명(resonance)이 생긴다는 것인데, 보통 이런 피크를 입자물리학자들은 해당 입자가 생긴 것이라고 해석한다. 그래서 그러한 피크를 봤다는 것은 그 피크에 해당하는 어떤 입자가 존재한다는 것을 의미하고, 그렇게 W/Z 보존을 찾은 것이다.
특히 W 보존과 Z 보존의 발견은 입자 발견 외에도 중요한 의의를 갖는데, 바로 '''표준 모형의 결정적인 증거'''이기 때문이다. 표준 모형, 그 중에서도 양-밀스 장 이론과 힉스 매커니즘이 맞다면 약력의 매개 입자가 아주 무거운 입자이어야 하며 W/Z 보존이 바로 그 예견된 입자이기 때문이다. 사실 이 입자들이 발견됐기 때문에 후술하게 될 힉스 입자 발견이 의미를 가질 수 있었던 것이다.
이들 입자들은 LHC의 할아버지 격인 SPS에서 발견되었다. 카를로 루비아와 시몬 반 데르 미어에 의하여 실험이 진행되어 1983년에 둘 다 몇 달을 간격으로 발견되었다. 그리고 바로 이듬 해에 이 두 사람에게 노벨 물리학상이 돌아갔다. 노벨상이 보통 오랫동안 진행이 된 실험에 돌아간다는 걸 생각하면 꽤나 이례적으로, 그만큼 이 발견이 엄청나다는 것을 의미한다.[19]

5.2. 월드 와이드 웹


[image]
'''세계 최초의 웹 페이지'''
사실 CERN이 대중에게 유명해진 데는 입자물리학보단 컴퓨터 과학쪽이 크다. 1989년 CERN에 근무하던 영국인 물리학자 팀 버너스 리와 동료들은 여러 연구 자료를 쉽게 검색하기 위해서 프로토콜프로그램을 개발했는데, 이것이 월드 와이드 웹이다.[20]
그때 팀 버너스 리는 스티브 잡스가 세운 NeXT사의 컴퓨터로 웹서버를 돌렸는데[21], 이 때문에 NeXT 컴퓨터는 세계 최초의 웹서버로 역사에 남게 되었다. 지금도 그리드 컴퓨팅과 컴퓨팅 관련해서도 연구하고 있다. 대표적으론 LHC@HOME이란 프로젝트. 최초의 웹서버로 돌린 페이지는 http://info.cern.ch이고, 전문은 여기있다.
[image]
WWW를 개발하고 수많은 토의를 한 끝에, 문서 한장으로 WWW를 퍼블릭 도메인으로 풀어놓았으며, 이로 인해 WWW는 전세계로 빠르게 확산되어 갔다. WWW가 전 세계에 끼친 영향을 생각해 보면 특허료 같은 거 안 받고[22] 저렇게 풀어놓은 게 얼마나 대인배스러운 일인지를 짐작할 수 있다.
LHC가 한번 가동하는데 뱉어버리는 내용이 엄청나다보니, 데이터양이 엄청나게 많을수 밖에 없고, 덤으로 Mikrotik의 고객리스트에 올라있기도 하다. 또한 컴퓨터 센터만으로도 4.5 MW는 기본이라는 듯. 일단 LHC 탐지장치에서 1초동안에 전송하는 데이터양은 다음과 같다.
  • ALICE: 4 GB/s (납-납 가동시)
  • ATLAS: 800 MB/s ~ 1 GB/s
  • CMS: 600 MB/s
  • LHCb: 750 MB/s
이렇게 해서 실험 4개가 한번에 돌면 1초당 25GB의 데이터가 나오고, 하루에 페타바이트를 처리한다.

5.3. 힉스 입자


힉스 입자는 힉스 메커니즘에 의해 각각의 입자에 질량을 부여하고 남은 입자로 힉스 이론을 증명하는 증거가 되는 입자이다. 그 덕분에 질량을 부여해주는 입자로 오해받지만 힉스 이론을 증명하는 증거 입자일 뿐이다. 양자 역학의 표준 모델의 계산 결과 이론상으로 그 존재가 확인되었지만 실제로 검출하기 위해서는 어마어마한 에너지가 필요한 것으로 여겨지기 때문에 실험으로 존재가 확인된 적은 없었다. 95년 탑 쿼크가 발견된 이후 남은 표준모델의 '''최후의 미확인 입자'''. 사실 LHC도 힉스 입자를 발견하기 위해 만들었다고 봐도 될 정도로 큰 떡밥.

2011년 12월 13일, 힉스 보손이 진짜 존재한다는 흔적을 찾았다고 전세계에 발표했다. 사진에서 보이는 붉은 선 4개가 그 후보 중 하나.[23]
2012년 7월 4일, 힉스 입자의 기존 예측 질량인 126GeV와 굉장히 가까운 125.3GeV의 질량을 가지는 새로운 입자를 발견했다는 발표를 했다. 기사
'''그리고 2013년 3월 14일 CERN은 2012년 실험 당시에 발견한 입자가 힉스 입자가 맞다고 공식 발표하였다.'''[24]

5.4. Scientific Linux


페르미 국립 가속기 연구소(Fermilab)와 함께 레드햇 엔터프라이즈 리눅스소스 코드를 수정하여 만든 Scientific Linux라는 자체 리눅스 배포판을 쓴다.

6. 소동



6.1. 초광속 입자 발견 소동


CERN에서 발표를 한 뒤 입자물리계에서는 관련 논문이 미친듯이 쏟아지고 있다. 실험 내용에 대한 반박 논문, 재반박 논문, 실험이 맞다는 가정 하에서 물리 법칙에 대한 논문, 등등등... 관심 있으면 arXiv를 찾아보자. 이에 대한 한 예시로 2011년 10월 12일 이 관측 결과가 CERN 측의 실수라고 주장하는 논문이 나왔다. 거리 관측을 담당하는 위성과의 대조를 통해 중성미자가 빛보다 빨리 닿았다는 결론을 내린 것인데, 지구의 자전 속도와 GPS 위성의 속도 차이로 인한 시간 보정을 계산에 넣지 못한 것. 이러한 관측자와 레퍼런스 사이의 상대성을 고려하지 못한 실수였다는 결론이 내려진 듯 했다. 관련 기사
그러나 2011년 11월 18일 CERN의 2차 실험에서도 빛보다 빠른 중성미자가 검출되었다고 워싱턴포스트가 보도했다. What? 해당 링크는 상대성 이론 오류를 보정한 것에 대한 내용이 전혀 없으니 보정이 됐는지 안 됐는지는 모른다.
현재 추가 대조 검토 방법에 대해 논의하는 중이라고 하니, 아무래도 이 문제는 좀 더 기다려야 결말이 나올 것 같다. 아마 페르미 연구소에서도 검증 실험을 할 것이니 2012년 안에는 결말이 날 것이다.
초광속 중성미자의 추가 보완 실험은 2011년 12월 초까지 계속될 예정이고 새로운 실험이 아닌 기존의 실험을 보완하는 형태지 실험체계를 재검증하는 것은 아니라고 한다.기사
결국 느슨하게 조여진 케이블때문에 60나노초의 오차가 생긴 것으로 결론이 났다. 결국 '''CERN의 관측실수'''로, 아인슈타인의 상대성 이론은 여전히 건재하다.
사실 CERN은 입자를 보내주기만 한 것이고[25] 실험은 이탈리아 그랑사소에서 했다.

6.2. 새로운 입자?


2015년 말, CERN에서 데이터 분석 결과 하나의 새로운 입자일지도 모르는 입자가 발견되었다. 이 입자는 철원자의 15배의 질량을 가진것으로 알려졌는데, 이 정도면 정말 무거운 수준이다. 몇몇학자는 이 입자가 중력자일지도 모른다는 추측을 내놓는 등[26] 5개월 동안 300건의 넘는 엄청난 양의 추측하는 논문이 나오게 된다. 그런데 이 입자가 왜 이렇게 큰 이슈 된건가? 힉스는 예측이라도 했지만 이 입자는 아무도 예측하지 못했기 때문이다. 이 입자가 무엇인지 정확하게 다시 실험한뒤, 원래는 16년 6월 즈음 공식발표를 하려했으나 담비가 변압기를 뜯어내는 바람에 지연되어 8월로 연기되었다. 결국 새로운 입자는 통계적인 오류일 뿐이라고 판명되었다
사실 입자실험물리하는 사람들 사이에선 그다지 반향을 이끌지 않았다. 이 신호는 3 sigma 정도[27]로 추산되었는데 이 정도는 통계적으로 얼마든지 묻힐 수 있다는 게 주된 이유였다. 결국 예상대로 더 많은 데이터에 묻혀 버린 것으로 결론지어졌다.

6.3. 기타 소동


힉스 입자 발표 발표가 나온 직후, 병림픽이 벌어졌다. 그것도 힉스 입자의 존재 여부 등 학술적인 토론이 아니라, 당시 발표 슬라이드에 사용된 '''글꼴'''이 윈도에 기본 탑재된 코믹 샌즈(Comic Sans)였는데, 이걸 두고 '이런 역사적인 발표에 이따위 개떡같은 글꼴을 써먹냐?'란 비난이 나오면서 이에 대한 키배가 벌어진 것. 영미권에서 Comic Sans체가 한국의 굴림체와 비슷한 위상을 갖고 있기 때문에 생긴 해프닝이다. 그리고 2014년 만우절, CERN은 홈페이지의 서체를 코믹 산스로 바꾸는 장난을 쳤다.

7. 기타


2010년 11월 18일, 반물질 원자를 0.127초 동안 유지시켰다고 보도되었다. 그리고 2011년 6월 6일에는 반물질 원자를 무려 1000초 동안 유지시키는데 성공했다.
최근 CERN 소속 관계자들이 레딧에 스레드를 만들고 일반인들의 질문을 받고 있는데. 그 중 누군가가 물은 '타임머신 연구는?'이라는 질문에 "그건 SERN에게 맡겼다"는 답을 해 오덕 팬덤을 충격과 공포로 몰아넣었다.# 링크의 첫 답변에 주목할 것.
CERN의 로고를 보면 알겠지만 이 연구소 안의 SPS라는 양성자 가속기의 모양을 로고로 쓰고있다.
1973년 세계 최초의 터치스크린을 개발하기도 했다.

8. 창작물에서의 CERN


  • 댄 브라운천사와 악마에 CERN에서 만든 반물질 폭탄이란 설정을 집어넣어 놔서 CERN을 광고해줬다. 근데 소설의 내용을 읽고 진실 여부를 헷갈려한 사람들 때문인지, 연구소 홈페이지에서 천사와 악마 관련 페이지를 내걸기도 했다. 현재는 페이지가 삭제되고 로만 때운 것처럼 보인다. 그나마도 404 뜬다. 참고로 소설 속에선 마치 미래 도시 마냥 CERN 시설을 묘사한 것을 볼 수 있는데, 실제로 가 보면 그런 거 없다. 위에서 설명했다시피 Meyrin site에 실제로 들어가면 처음 보이는 리셉션 건물과 방문객들을 위해 마련된 전시관, 그리고 몇 안 되는 새 건물들을 제외하면 상술했듯이 공장 단지 같은 느낌 밖에 안 난다. 그나마 미래 느낌이 나는 거라곤 거대한 네스프레소 자판기 정도 뿐. 덧붙여서, CERN 연구진들이 종교에 대해 엄청난 반감을 가지는 것처럼 묘사되는데, 굉장히 허황된 내용이다. 종교를 가진 사람도 굉장히 많고 내부에 종교 클럽도 있다.
  • 슈타인즈 게이트에 등장하는 조직 SERN의 모티브이다.
  • SUPER LOVERS의 하루코가 여기 소속이라고 한다.
  • 전파교사에서는 CERM이란 이름으로 등장하였다.
  • 로드 엘멜로이 2세의 사건부에서는 마안에 대해 설명하며 CERN 앞에 세워진 나타라자 상을 오컬트적 측면에서 분석한다. 시바신이 지닌 마하칼라(거대한 허무)의 측면은 블랙홀과 개념적으로 매우 유사하기에, 소립자의 움직임을 나타라자의 춤에 씌운다는 것은 블랙홀을 시바의 마안으로 취급하고 그 내부의 미시적인 마력의 움직임을 찾아내는 셈이라고 한다. 타입문 월드의 CERN은 칼데아처럼 마술 관련 지식도 받아들인 곳일지도. 하지만 현실 세계에서는 그냥 CERN과 인도 간의 협약이 맺어진 기념으로 인도 정부가 선물해 준 것 정도 밖에 안 되는 동상이다. 실제로 동상 앞에 관련 내용이 써져 있다. 인도는 유럽이 아니지만 인도 뿐만 아니라 비유럽권의 수많은 국가들이 CERN과 공동 연구를 진행하며 CERN을 지원하는 중이다. 우리나라도 그 중 하나며 중국과 일본은 말할 것도 없다. 게다가 CERN 앞에 있는 동상도 아니고 어디 구석(40동과 39동 사이[28])에 있다.
  • 2019년 프랑스 영화 미립자들에서는 실제 CERN이 있는 지역을 배경으로 입자가속기가 작동하면서 벌어지는 기이한 현상들을 성장물과 섞어서 다루고 있다.

8.1. 관련 문서



[1] CERN은 쎄른, 쎄~ㅎ은, 체른이라 읽을 수 있다는데 CERN이 위치한 스위스 제네바에서 독일어식 발음인 체른으로 주로 읽는 바람에 체른이 일반적이라 한다.[2] 비슷하게 CERN 본진이 위치한 메헝(Meryin) 사이트도 이름을 처음 들으면 뭔 소리인가 하고 갸웃하곤 한다. 물론 그런 거 없이 그냥 메랑이라고 읽는 사람들도 많지만.[3] 단순한 부품을 말하는 것이 아니라 가속기 및 검출기의 '''핵심 부품'''을 말하는 것이다. 실제로 우리나라에서는 차후에 있을 LHC의 대대적인 업그레이드 과정에서 새로 설치될 검출기의 코어 부분을 제작하고 있다. LHC 문서 참조.[4] 주로 EU의 회원국이냐 아니냐[5] 프랑스어로 된 지명으로, 현지 발음으로 메헝 비슷하게 들린다.[6] 혼동이 잦은지 설명에도 이건 우주선이 아닙니다라고 적혀있다.[7] 이에 관하여는 후술한다.[8] 건물 번호 배치가 특이해서 건물 번호를 불러도 바로 아는 건물이 아니면 알 수도 없다. 그래서 이런게 있다. CERN Map, CERN Map Application (Google Play) [9] 우리나라에서는 KCMS와 KoALICE라는 이름의 두 사업이 CERN과 협력을 하고 있는데, 이 두 사업을 통해 파견된 인원들을 위한 사무실 건물(587, 588동)이 있는데 이 건물들이 1986년도에 지어진 슬레이트 지붕이다. 바로 앞에 있는 Proton Syncrotron 건물 모양도 딱 공장처럼 생겼다.[10] 꼭 학위를 요하지는 않는다. 박사 학위는 없지만 검출기 제작 쪽에서 필수적인 역할을 맡은 연구원들도 있다. 이 연구원들은 검출기 연구에서 필수인력이 될 수 있다. 심지어 이 분들이 없었으면 검출기 쪽 연구는 성립할 수 없을 것이다.[11] 힉스 입자를 찾는 거라든가 SUSY 입자를 찾는 것에 해당하는 일을 소위 분석(analysis)이라고 부른다. 그런데 이걸 하려면 지금 받은 데이터에 문제가 없는지 (워낙 예민한 장치인데다 사람 일이 늘 그렇듯 크고 작은 이슈들이 종종 발생한다), 있다면 어떻게 고쳐야 할지, 예측을 위한 시뮬레이션이 과연 믿을만한 건지, 어딘가 안 맞는 부분이 있는 건지, 안 맞으면 어떻게 고쳐야 할지 전부 다 따져야 한다. 물론 이걸 한두 팀에서 다 하는 건 불가능하다. 이런 일들을 서비스워크라는 이름으로 수많은 연구진들에게 적당히 잘 뿌린다. 그러면 authorship에 목마른 세계 각지의 연구원들이 열심히 일해서 데이터와 시뮬레이션을 쓸만하게 다듬어준다. 그러고 나서 힉스 입자를 찾든 암흑 물질을 찾든 SUSY 입자를 찾든 하게 된다. [12] 'CERN Collaboration' 혹은 'LHC Collaboration' 같은 이름은 없다. 보통 검출기 이름을 가지고 실험 이름을 짓게 된다. 그런 이유로 학계에서는 CMS 실험, ALICE 실험이라고 말하지 LHC 실험이라고 잘 말하지 않는다. 그래서 The CMS Collaboration, The ALICE Collaboration 같은 이름으로 올라오게 된다.[13] 뭣도 모르는 뉴비가 끈이론을 거들먹거리는 게 우스워서 그러는 게 없진 않겠지만 그보다도 검증 실험 자체가 아예 요원한 끈이론이 실험하는 사람들 입장에서는 이론은커녕 소설로 보이기 때문인 탓이 더 크다. 초끈이론 문서의 비판 부분을 참고하자.[14] 어떤 자판기들은 유로도 취급한다. 그런데 문제는 '''같은 액면가'''에 해당하는 동전을 넣어야 작동한다는 것. 즉, 2 프랑 짜리 물건을 유로 동전으로 뽑고 싶으면 환율에 상관 없이 2 유로를 넣어야 한다. 그런데 보통 우리나라 돈으로는 유로 환율이 더 세다. 따라서 이렇게 하면 당연히 손해다.[15] 그 유명한 볼테르 맞다. 오랫동안 이 곳 페르니에서 살았다고 한다. 동상과 생가가 있으니 기회가 되면 들러 보자.[16] 물론 만일의 사태를 대비해서 여권은 갖고 다니는 것이 좋다. 아주아주 가끔 불시검문을 하기도 한다. 특히 국경을 넘던 버스 하나를 잡아서 모든 승객들의 ID 카드 혹은 여권을 체크하기도 한다. 그런데 재밌게도 CERN ID 카드 역시 비슷한 효력이 있는 것으로 보인다. 검문관들이 검사하려다가도 CERN ID 카드가 목에 걸려 있으면 그냥 지나간다.[17] 양성자의 질량이 0.938 GeV인 걸 감안하면 거의 4~5주기 원소들의 질량에 육박하는 수준이다.[18] GeV는 에너지 단위라서 GeV/c^2를 쓰는 게 정확할지 모르나, 입자물리 하는 사람들에겐 c=1이라서 별 의미 없을 뿐더러 귀찮기도 해서 그냥 GeV로 쓴다. 그런 이유로 입자물리 하는 사람들에게 운동량의 단위 역시 MeV 혹은 GeV이다.[19] 이만큼 이례적으로 빨리 준 케이스로는 양전닝와 리정다오의 패리티 반전 깨짐 규명 정도 밖에 없다. 힉스 입자 발견과 중력파 발견도 얼핏 이례적으로 보일 수 있으나 이들은 관련 실험 자체를 굉장히 오래 한 케이스라 다소 애매하다.[20] 이것 때문에 인터넷의 원조가 아파넷을 만든 미국이냐 월드 와이드 웹을 만든 영국이냐를 놓고 양국 간의 자존심 대결이 지금까지 일어나고 있다.[21] CERN이 매스매티카를 쓰기 위해 NeXT사의 컴퓨터를 다수 구입했기 때문이다.[22] 오히려 특허료 때문에 영향력이 지금보다 훨씬 더 작아질 수도 있었다.[23] 힉스 입자가 없었다면 절대로 나올 수 없는 선이라는 서술이 있는데, 사실 틀렸다. 예를 들어 Z 보손 두 개가 힉스 입자 없는 다른 프로세스를 통해 동시에 생성되었을 때에도 얼마든지 생길 수 있는 것이다. 실제 연구에서도 이러한 프로세스들을 전부 고려해서 배경 사건에 넣은 다음 분석한 것이다. 물리학자들이 본 것은 힉스 입자가 없는 프로세스들만 가지고 예측한 사건 분포에 벗어난 충돌 사건들이 (통계적으로 봤을 때 충분히) 많이 생긴 것을 본 것이다.[24] 가장 결정적인 것은 두 광자가 나오는 채널과 두 개의 렙톤 쌍(즉, 총 네 개의 렙톤) 채널 둘 다에서 같은 질량의 peak이 나왔다는 것과 이 입자의 스핀이 0임을 확정한 실험이다.[25] 입자충돌실험을 하면 고에너지 중성미자가 많이 생성되는데, 이걸 들여다 보자는 아이디어로 그랑사소 실험이 이루어진 것이다. 우리나라의 RENO 실험 같은 것도 (이쪽은 원자력 발전소에서 나온 중성미자를 보는 것이지만) 비슷한 방식의 실험이다.[26] 다만 정말 중력자일 가능성은 없다. 중력의 작용범위가 시공간이 펼쳐진 우주 전역이며, 그 전파속도가 상대성이론에 의거하여 광속인 이상, 반드시 중력자는 룩손(정지질량 0, 이동속도 광속의 입자)이 되어야 하기 때문.[27] 대략 말하자면 만약 저게 우연으로 인한 것이면 같은 실험을 370번 정도 반복했을 때 우연히 한 번 튀어나올 확률.[28] Square Edoardo AMALDI라고 써진 곳에 있다