주기율표

 


1. 개요
2. 형태
2.1. 1족
2.2. 2족
2.3. 3족~12족
2.4. 13족
2.5. 14족
2.6. 15족
2.7. 16족
2.8. 17족
2.9. 18족
3. 역사
4. 얼마나 외울까
5. 여담
6. 관련 문서
7. 관련 사이트


1. 개요


[image]

ASAPScience의 주기율표 노래[1]
週期律表 / Periodic Table (of the Elements)
화학 분야에서 쓰이는 개념으로 자연계에 존재하는, 그리고 인공적으로 만들어 낸 모든 원소를 그 원자번호와 원소의 화학적 특성에 따라 나열한 표다. 기초적인 지식이 있다면 물질의 화학적 성질을 쉽게 예측할 수 있게 하며, 100개가 넘는 원소의 특징을 체계화한 데 큰 의미가 있다.

2. 형태


기본적인 주기율표는 위의 형태에 더해 원자번호, 원자량, 원소의 화학적 특성에 따른 분류(비금속, 금속, 준금속), 주요 산화수, 간혹가다 전자배치 정도를 표시하고 있다. 그러나 화학에 대한 지식이 있는 사람이면 원소의 위치(족[2], 주기[3]등), 와 그 원자번호(양성자의 수=이온화 안 됐을 때의 전자의 수, 바닥상태의 전자배치 등)를 보고 원소에 대해 어느 정도의 정보를 얻을 수 있게 되어 있다.
일반적으로 주기율표 아래쪽 주기는 원자가 커서 상대적으로 무르고, 위쪽 주기는 원자가 작아서 단단하다. 원자번호가 클수록 원자의 전자껍질이 두꺼워 지고 이로 인해 원자 사이즈가 커지면 전자 밀도가 낮아져 무르게 된다.
위의 정보 외에도 용도에 따라 다양한 정보를 포함하는 주기율표 역시 존재한다.
주기율표의 형태는 대부분 아래의 직사각형 표와 같은 형태지만[4] 직사각형 형태가 아닌 형태의 주기율표도 많이 있긴 하다. 대개 입체라서 만들기 힘들어서 잘 안 쓰며, 보통은 보기조차 힘들지만.
[image]

2.1. 1족


수소를 제외한 1족 원소들은 알칼리 금속으로 리튬, 나트륨(소듐), 칼륨(포타슘), 루비듐, 세슘, 프랑슘이 있다. 반응성이 큰 금속으로 각 원자들은 8족 기체심을 가지며 원자가 껍질의 하나의 s전자를 가진다. 모든 금속들 중 가장 전기양성적인 알칼리금속은 원자가 전자의 전자 하나를 잃고서 강한 반응을 일으킨다. 반응성이 커서 순물질로는 존재하기 어렵기에 주로 화합물 형태로 존재한다.

2.2. 2족


2족은 알칼리 토금속으로, 베릴륨, 마그네슘, 칼슘, 스트론튬, 바륨, 라듐이 있다. 최외곽 원자가껍질에 2개의 전자가 있다. 두 전자를 잃어버려 알칼리 금속처럼 하나의 산화상태 +2를 가진다. 베릴륨을 제외하고 대개 이온성 화합물을 형성한다. 알칼리금속처럼 반응성은 크지만 무르지는 않다.
대표적으로 마그네슘의 경우 반응성이 커서 연소 시 밝은 빛을 내며 타는 특징이 있다. 카메라 플래시, 불꽃놀이에 쓰인다. 은백색의 금속으로 하소처리(열처리)하면 표면적이 매우 낮고 고밀도이며 화학적으로 비활성인 중소마그네사이트가 되고 이는 모든 내화 산화물들 중에서 가장 높은 용융온도를 가짐으로 염기성 내화벽돌로 이용되는 등 중요한 산업적 용도를 가진다.
또 다른 대표적인 원소로 칼슘이 있다. 칼슘은 산소화 반응해서 비료나 건축재료로 만들 수 있다. 소석회라고 하는 수산화칼슘은 산화칼슘과 물을 섞어 만들어지는데, 이게 바로 시멘트이다.

2.3. 3족~12족


전이 원소 참조.

2.4. 13족


13족은 붕소, 알루미늄, 갈륨, 인듐, 탈륨, 니호늄이 있다. 원자가껍질 배치가 $$ns^2np$$이다. 이 족의 모든 원소는 +3의 산화상태의 화합물을 형성하거나 13족과 14족의 원소들은 1, 2, 13족의 원소들만큼 서로 닮은점을 가지는 건 아니다.

2.5. 14족


14족은 탄소, 규소, 저마늄, 주석, , 플레로븀이 있다. 탄소는 비금속 규소와 저마늄은 반도체 원소, 주석과 납은 금속으로, 이들 원소의 원자는 원자가껍질에서 $$ns^2np^2$$배치를 가진다. 14족의 모든 원소는 할로겐과 산소와의 화합물에서 +4인 산화상태를, 수소화물에서는 -4의 산화상태를 가진다. 네 개의 결합수가 균형을 이루면서 극성을 띄지 않는다.

2.6. 15족


15족은 질소, , 비소, 안티모니, 비스무트, 모스코븀이 있다. 질소와 인은 15족의에서 비금속이고, 비소와 안티모니는 반도체 원소, 비스무트는 금속이다. 원자가껍질에서 이들 원소의 원자는$$ns^2np^3$$배치를 가진다.
질소원자는 상당히 큰 전기음성도를 가지며 원자가 껍질에 전자를 여덟개보다 더 많이 수용시키지 못하기에 질소의 화학적 성질은 15족의 다른 원소와 본질적으로 다르고 질소는 염소만큼 전기음성도가 크며 단지 플루오린산소만이 더 큰 전기음성도를 가진다.
비금속인 질소와 인의 원자는 전자 3개를 얻으면 18족 기체 배치를 이룰 수 있고 N-3이온은 매우 전기양성적인 금속과의 질소화합물에서 나타난다. 수소와의 공유화합물인 경우에 원소들은 -3의 산화상태를 가지는 것으로 나타나는데, 그것은 수소가 이러한 화합물에서 항상+1의 산화수를 가지기 때문이며, -3의 산화상태는 금속과의 이온성 혹은 공유성 이성분 화합물에서도 볼 수 있다.

2.7. 16족


16족은 산소, , 셀레늄, 텔루륨, 폴로늄, 리버모륨이 있다. 산소와 황은 산소족 원소의 비금속 원소이며, 셀레늄과 텔루륨은 반도체 원소이고, 방사능 물질인 폴로늄은 텔루륨, 비스무트와 유사하지만 성질에 있어서도 주로 금속성을 띤다. 칼코겐 원소라고도 불린다.

2.8. 17족


17족은 할로젠 원소이며 플루오린, 염소, 브로민, 아이오딘, 아스타틴, 테네신이 있다. 1족과 2족의 금속 원소들처럼 원소들끼리의 유사성이 크다. 할로겐족 원소들은 큰 전자친화도, 큰 전기음성도, 큰 이온화 에너지를 가지는 비금속으로 이중에서 플루오린의 원자는 다른 할로겐 원자보다 매우 작으며, 가장 전기음성도가 커서 반응성도 크다. 단, 아스타틴과 테네신은 비금속이 아닌 전이후 금속으로 예상되고 있다.[5] 주기가 커질수록 가리움 효과로 인해 금속성이 강해지기 때문. 그러나 이들은 강한 방사능으로 인해 확인이 어렵기 때문에 위의 원소들과 함께 비금속 취급을 당하는 경우가 흔하다.

2.9. 18족


18족은 비활성 기체로, 헬륨, 네온, 아르곤, 크립톤, 제논, 라돈, 오가네손이 있다. 비활성 기체 문서로. 비활성 기체족 원소들은 최외각 전자 껍질이 8개(헬륨의 경우 2개)의 전자로 완전히 채워져 있어 낮은 화학적 활성을 지니며, 서로간에도 결합이 어려우므로 상온에서 기체로 존재한다. 단, 오가네손은 상대론적 효과로 인해 같은 족의 다른 원소들과는 매우 다른 성질[6]을 지닐 것으로 예측된다.

2.10. 란타넘족



원자번호 57번부터 71번까지의 원소들로, 란타넘부터 루테튬까지를 이른다. 해당 문서로.

2.11. 악티늄족



원자번호 89번부터 103번까지의 원소들로, 악티늄부터 로렌슘까지를 이른다. 해당 문서로.

3. 역사


드미트리 멘델레예프가 최초의 주기율표를 고안해 냈으며 이 공로로 1906년 노벨 화학상을 수상할 뻔했으나 '''한 표'''가 모자라서 수상에 실패했다.[7] 그 역사는 초기 화학의 역사 그 자체라고 할 수 있다. 화학 교육도 이론적인 부분을 여기서 시작한다.
존 돌턴원자설이 등장한 이후 근대 화학은 맹렬하게 발전하기 시작했는데, 그 발전 과정에서 다양한 원소들이 발견됐다. 이 원소들은 특정한 성질을 공유하는 그룹으로 묶일 수 있었고, 따라서 원소들이 보이는 주기성에 관한 다양한 해석들이 나왔다.
그렇지만 이런 주기성에 대한 해석들은 전부가 주류가 될 만큼 인정받지 못했다. 어찌보면 당연한 것이, 당시에는 아직 발견하지 못한 원소도 있었고 원소인 것으로 알려졌지만 실제로는 아닌 것도 있었으며, 또한 이런 특성과 주기성을 연결하기 위한 현재의 원자번호에 해당하는 개념이 정착되지 않았다. 따라서 이론들은 그야말로 엉성하기 그지없었다. 당연히 이런 이론들은 나오기 무섭게 무차별로 공격당하고는 사라졌다.
이 쪽으로는 뉴랜즈의 옥타브설이 유명한데, 통합과학 1단원 중에 옥타브설이 소개된 부분이 있으니 그 곳을 참고하면 2주기까진 그럭저럭 맞아떨어지다가 3주기에 들어가서는 주기성이 사정없이 깨지는 걸 알 수 있다. 그런 문제도 있고, 당시 화학계에서 뉴랜즈는 이 가설을 발표하고 나서 '''화학 원소 가지고 음악이라도 연주하는 거냐?''' '''알파벳 순서로도 한번 배열해보지?'''란 비판을 들었는데, 이 때문에 '''실망해서 과학을 포기'''하게 됐다고 한다. 하지만 나중에 멘델레예프의 주기율표가 인정을 받고 난 뒤 (1872년, 22년 뒤) 영국 화학회에선 뉼랜즈의 시도도 의미가 있었다고 하며 나중에 불러 상을 주었다고 하니 인간만사 새옹지마.
어쨌든 이런저런 각종 잡설이 난무하던 화학계에 빛을 던진 것이 바로 멘델레예프. 그는 이 주기율표를 원소들이 적힌 플레잉 카드로 카드 게임을 하다가 생각해냈다고 하며[8], 원자량과 화학적 성질을 통해 현 주기율표의 원초적인 형태를 고안해냈다. 이 원초적인 형태는 주기율표의 1~3주기에선 현재도 거의 그대로 쓰인다. 소위 '''단주기 주기율표'''라고 부르는 그것.
멘델레예프는 위에서 전술한 장애물을 오히려 반대로 이용했다. 주기성을 훼손시키는 원소에 대해서 발견되지 않은 원소가 사이에 있음을 가정하고 자리를 비워놓은 후 주기성에 입각해서 물리화학적 특성을 거의 정확히 예언했고, 원소로 잘못 인지된 화합물은 과감하게 빼버렸으며, 다른 사람이 발견한 원소의 특성에 대한 보고서의 잘못된 부분을 보고 주기성을 감안하면 잘못된 결과이니 다시 실험해서 수정하라는 조언까지 하기도 했다. 물론 멘델레예프와 그의 이론이 신은 아니었으므로 그가 말한 이런저런 예언이나 설명이 전부 맞아떨어진 건 아니지만, 아래 표처럼 맞힌 게 정말 '''기가 막힐 정도로 정확했기에 묻혔다'''.
'''멘델레예프가 예측한 에카-규소와 실제 저마늄의 특성 비교'''
'''대상/성질'''
'''멘델레예프의 1871년 예언'''
'''실제 측정해서 얻은 값'''
'''오차'''
원자량
72
72.64
-0.64
밀도, g/cm3
5.5
5.323
+0.177
녹는점, °C
높음
938.25

비열, J g-1K-1
0.305
0.309
'''-0.004'''
원자가
4
'''정확'''

진한 회색
회백색

M을 얻는 방법
MO2나 K2MF6와 Na와의 반응
K2GeF6와 Na와의 반응

M의 반응성
산에 약간 녹으며, 알칼리와는 반응하지 않음
HCl이나 묽은 NaOH엔 안 녹고, 뜨거운 진한 HNO3와 반응함.

산화물 MO2
녹는점 높음, 밀도 4.7 g/cm3
녹는점 1388°C, 밀도 4.226 g/cm3
밀도 +0.474
황화물 MS2
물에 안 녹음, (NH4)2S[9]에 녹음
'''정확'''
염화물 MCl4
끓는점<100°C; 밀도 1.9 g/cm3
끓는점 83°C; 밀도 1.879 g/cm3
끓는점 +17°C, 밀도 +0.021
M(C2H5)4
끓는점 160°C
끓는점 184°C
-24°C
이미지로 보기 - 출처
위 표와 같이 존재조차도 모르던 원소의 물리량이나 화학적 특성을 작두탄 수준으로 맞혔으니 주목을 안 받을 수 없다. 이 사례는 대한민국 화학II 교과서에도 단골로 나올 정도며, 에카-규소 이외에도 에카-붕소(스칸듐), 에카-알루미늄(갈륨), 에카-망가니즈(테크네튬) 등을 기가막히게 맞춰냈다.
이후 헨리 귄 제프리스 모즐리란 비운의 천재가 이전의 원자질량 구분법으로 인한 화학성질과 원자량의 불일치[10]를 X선으로 원자번호를 결정하는 방식(=핵의 양성자 수)으로 해결해내면서 현재의 주기율표가 만들어질 수 있었다. 그 또한 전사하는 바람에 노벨상을 못 받았다.
훗날 멘델레예프는 사후 이 엄청난 공적을 인정받아 101번 원소의 이름이 그의 이름을 따서 지어지게 된다. 참고로 불안정한 게 그의 말년 성격과 닮았다고 한다.

4. 얼마나 외울까


중고생이라면 20번인 칼슘까진 번호순을 외우는 게 좋다. 약간 머리를 굴리면 암기 사항의 일부는 원자번호나 원자량에서 유도되기 때문이다. 하지만 원소 이름부터 수소나 산소 등 몇몇을 제외하곤 대부분 외래어인 데다 첫 음절에 '베', '헬', '플' 등 우리말에서 잘 안 쓰이는 음절들이 많이 나와 적절히 만들만한 문장도 없어서 외우는 방법이 그렇게 녹록치 않다. 그냥 첫 글자를 따서 수헬리베붕탄질 산불네나마알규 인황염아칼칼슘이라고 외우는 듯.
그래도 억지로 한국어로 외우려면 네온까진 수소빼고 '''허'''(헬륨-He)'''리'''(리튬-li)'''뼈'''(베릴륨-Be) '''부'''(붕소-B)'''서'''(탄소-C)'''져''' '''나'''(질소-N) '''아'''(산소-O)'''프'''(플루오린-F)'''네'''(네온-Ne) 같이 외울 수 있긴 하다.....
20번까지 영어로 외우는 방법은 다음 방법이 통용된다고 한다. 여기서 화학 관련 기능사 이상의 자격증을 취득하는 경우, 원자량을 구하는 방법이 예외인 원소는 주황색으로 처리한다.

''' 헬 / 리 비 키 옷 풀 네'''

'''H He / Li Be B C N O F Ne'''

'''나 만 알 지 펩 시 콜 라 / 크카'''

'''Na Mg Al Si P S Cl Ar / K Ca'''

교사나 강사들은 풀(플루오린)뜯어먹는 염소 불X(브로민)이(아이오딘)처럼 그럴듯한 암기법을 개발해 보려고 하고, 흔히 알고 있는 노래에 붙여보기도 하고, 다들 1가지씩의 암기법이 있고 그것대로 외우도록 가르치지만 사실 뭐라고 외워도 어색하다.
학력고사 시절엔 100여 개에 달하는 원소의 이름과 특성(즉, 주기율표 전체)을 싹 다 외워주는 게 미덕이었다고 한다. 사실 주입식으로 외우게 하기엔 무리가 많아서 그렇지, 그냥 통째로 머리에 집어넣고 다니면 편리하긴 하다.
단, 과고나 영재학교 쯤으로 가면 상황이 다른게, 모 과고의 경우 정식 교육도 아니고 신입생 사전교육 기간에 주기율표를 악티늄까지 다 외우라는 과제를 내기도 한다.
주기율표의 모든 원소를 다 외우고자 한다면 란타넘족악티늄족을 건너뛰고 오가네손(舊 우눈옥튬)까지 외운 다음에 란타넘족과 악티늄족을 외우는 게 좋다. 란타넘족과 악티늄족은 어려워 막힐 수 있기 때문이다.
화학 전공자들은 란타넘족과 악티늄족을 제외하고 나머지의 이름과 족은 싹 외운다. 아니, 공부하다 보면 저절로 외워진다. 일단 상술했듯이 기본적으로 전이금속 아닌 것들은 다들 외워서 수능치고, 일반화학 듣다 보면 자주 나오는 원소는 원자량도 외우고, 무기화학 듣다 보면 전이 원소도 외우고, 뭐 그런 식으로 해서 졸업할 때가 되면 주기율표를 통째로 외우게 된다. 심지어 란타넘족과 악티늄족을 외우는 사람도 있고, 전이금속의 이름에 더해서 최외각전자의 전자 배치까지 완벽하게 외우고 있는 사람도 있다.
참고로 중학교 때 한글로 주기율표를 외웠더라도, 나중에 다 잊어버리고 영어로 다시 외우는 경우도 있다. 원소 기호로 외워야 문제 풀이 속도 상승에 도움이 된다.
모두 암기한다는 전제 하에 외우는데 걸리는 시간은 보통 1~2시간 정도. 물론 2시간 동안 쭈욱 외우는 사람은 드물고, 보통 심심할 때 몇 분씩 외워서 합이 그 정도라는 거다. 머리가 좋으면 30분도 걸릴 수 있다. 보통 5주기까진 술술 외우다가 7주기, 란타넘, 악티늄족에서 막히는 편이다.[11]
만약 원소를 다 외웠다면 일단 금속 비금속부터 구별하고 그 다음에 비활성 기체, 알칼리 금속 등 종류를 다 외워보자. ,
요즘은 웬만한 학교에선 항상 주기율표를 제공한다. 대학에 가도 교실 한쪽 벽에는 항상 큰 주기율표가 걸려 있어 그것을 힐끔힐끔 보면서 수업한다. 그러나 이건 대학마다 다르다. 어떤 교수는 전이 금속을 제외한 모든 원소를 외우라고 한다. 어지간한 학부 수준 화학책의 맨 앞에 붙어있기도 하다. 하지만 대학에서 필요한 건 원소 번호 몇 번 이런 게 아니라 원자량이나 전자 친화도같이 원소들의 물리적 화학적 특성값이라 어차피 찾아봐야 한다. 가끔씩 이걸 다 외우는 사람이 있긴 한데, 그건 필요해서 그러는 게 아니다. 어쩌다 보니 외워졌거나 순수한 취미다. 다만, 주기율표의 원소가 워낙 많아서 주기율표를 외운 사람과 그렇지 않은 사람의 주기율표 해독 속도는 큰 차이가 난다. 시험을 볼 때 주기율표를 주긴 하지만, 주기율표를 외우고 있지 않다면 시간을 낭비하게 될 가능성이 높다는 뜻이다. 시험 시간이 부족하게 느껴진다면 주기율표를 외워보자.

5. 여담


  • 전술했듯이 주기율표를 노래로 만들어 외우는 경우가 많다. 화학자이자 작가인 곽재식이 작사, 작곡, 노래한 주기율표 외우는 노래인 <그리움 주기율>이란 노래도 있다. 듣는 곳은 여기 발라드같은 절절함은 덤.
  • 거의 안 알려졌지만 문화적으로 뭔가 임팩트를 남겼는지 원소가 아닌 다른 것들의 주기율표 같은 것도 있다. 그 분야의 덕후들이 덕질을 위해선지 그렇게 변형해 쓰고 있다.
  • 주기율표의 다양한 형태와 각기 어떤 정보를 담고 있는지 보고 싶다면 구글 이미지 검색에서 periodic table로 검색해보자. 형태를 보면 대부분 맨 위에 보인 직사각형 형태지만 그렇지 않은 것도 상당히 많다. 별난 형태의 주기율표만 찾아보고 싶다면 alternative periodic tables으로 검색해보자. 그 수도 상당해서 대략 600만 개 이상 나온다. 물론 겹치는 것도 있고, 보여주는 것 자체가 앞의 1000개 뿐이지만... 어쨌든 엄청나게 많다.
  • 아직 발견되지 않은 119번 이후의 원소 위치를 예상해 만든 확장 주기율표가 있다. 무식하게 7주기 이전과 같은 방식으로 만든 주기율표는 잘못된 주기율표다.
    • Fricke가 만든 주기율표(52칸짜리, 32칸짜리)는 현재 한국어 위키백과나무위키틀:확장 주기율표에선 119번 이후의 원소 문서에서 Fricke식의 주기율표를 쓴다.
    • 2011년에 페카 퓌쾨(Pekka Pyykkö)란 핀란드 화학자가 제안한 퓌쾨 모델(Pyykkö Model)이라는 주기율표가 있다. 퓌쾨 모델은 138번까지는 위의 확장 주기율표와 같으나 운트리엔늄(원소 139번)과 운쿼드닐륨(원소 140번)이 생뚱맞게 오른쪽으로 갔다가 운쿼드우늄(원소 141번)부터 다시 왼쪽으로 가는 등 원소 위치가 더 복잡하다. 이는 8주기 원소 문서에도 언급됐듯이 5g부터 8p 오비탈까지 에너지가 비슷해서 채워지는 순서가 제멋대로일 것으로 예측되기 때문이다. 자세한 건 영문 위키백과의 문서에 나와 있다.
    • 영문 위키백과의 확장 주기율표는 얼핏 보면 7주기 이하 원소의 주기율표와 똑같은 방식으로 만들어진 것 같이 보이지만, g블럭이 쌓음 원리를 따른다면 18개가 되어야 하지만 4개 더 늘어난 22개이다. 만약 쌓음 원리를 따랐다면 에카오가네손은 원자번호 172가 아니라 168이 되어야 한다.
  • 원소기호에 J/j와 Q/q가 안 쓰인다. q는 플레로븀이 우눈쿼듐(Uuq)이었을 때 잠깐 쓰였고, J는 쓰일 뻔했으나 113번 원소를 자포늄이 아닌 니호늄으로 명명하면서 안 쓰였다.
  • 일반화학을 비롯해 대학교나 대학원에서 쓰는 화학책이라면 책 표지 바로 안쪽에 무조건 하나씩은 들어가 있다. 다만 원자 오비탈은 물리화학같이 있는 경우도 있고 일반화학(줌달)처럼 없는 경우도 있다.
  • 식품 위생문제와 관련된 인터뷰에서 원소 주기율표에 나오는 모든 원소들을 먹어보지 않으면 중국인이라 말할 수 없다고 하는 비꼬기를 한게 한국 인터넷에 짤방으로 돌기도 했다.
>기자: 중국의 식품 안전에 대해 한 말씀 해주세요. (뉴스 인터뷰 中)
>시민: 원소 주기율표에 나오는 원소들을 다 한 번 씩 먹어봐야, 중국인이라 자처할 수 있다던데요?
>(원문: 不是有人说不把元素周期表上元素都吃一遍 都不好意思说自己是中国人?)
  • 모든 원소가 주기성을 따르는 것은 아니다. 일부 무거운 원소는 주기율표상의 자리로 예측할 수 있는 것과는 다른 행동을 보인다. 예를 들어 아래에 있으므로 은백색이여야 하며, 수은카드뮴 아래에 있으므로 상온에서 고체여야 하지만 실제로는 그렇지 않다. 이러한 이유는 원소가 무거워질수록 전자의 공전 속도가 광속에 가까워지면서 상대론적 효과가 발생하기 때문이다. 이러한 효과는 7주기 후반 원소에서 더 빈번히 나타날 것으로 보이는데, 플레로븀은 기체 금속일 것으로,[12] 오가네손은 반도체 성질을 가진 금속성 고체일 것으로 예측되고 있다. 원소의 주기성만 염두에 두고 오가네손은 기체, 나머지 7주기 원소는 전부 고체로 예측하는 주기율표는 부정확하다.
  • 중학교 2학년 과학 교육과정에 이 주기율표가 나온다. 외우는 데 상당한 난이도를 필요로 한다.
  • 이탈리아 화학자/문필가인 프리모 레비는 이와 같은 제목의 산문집을 내기도 했다. 유대인인 작가 본인이 수용소 생활이나 자신의 생각 등을 담았다. 원소 이름이 각 챕터의 이름으로 되어 있는게 특징.
  • 가끔 실제 원소를 수집해서 주기율표를 만드는 사람이 있다. 질소나 철처럼 그냥 막 주워도(...) 되는 원소도 있고, 헬륨이나 알루미늄처럼 쉽게 살 수 있는 것도 있고, 우라늄이나 플루토늄처럼 살 수는 있는데 법적으로 문제되는 것도 있고 등등 각 원소마다 사정은 다르다. 아스타틴이나 프랑슘처럼 지구를 다 뒤져도 얼마 없는 원소 같은 경우는, 광석 하나 갖다놓고 "여기 아스타틴 원자 몇 개 있을 수도 있음"(...)이라 우기기도 한다. 뭐 없는 건데 어쩔 수 없지만...

6. 관련 문서



7. 관련 사이트


한국어 외 다국어도 지원, 원소를 상세하게 알려준다.
  • 네이버캐스트 화학원소[13]
주기율표 순서로 원소의 특성을 연재했다. 2010년 7월 26일부터 1~2주에 한 번씩 연재했으며, 2016년 12월 10일부로 118번 원소인 오가네손까지의 연재를 완료했다. 추가로 인쇄용 주기율표도 같이 공개됐으니 참고.

[1] 천국과 지옥#s-1을 기반으로 했다.[2] 왼쪽부터 오른쪽으로 갈수록 s-p(2주기부터)-d(4주기부터)-f(6주기부터)궤도순으로 전자가 채워지는데, 여기서 최외곽 전자배치가 똑같거나 거의 비슷한 녀석들끼리 화학적 성질이 비슷한 놈들을 세로줄(예: 산소, , 셀레늄, 텔루륨, 폴로늄, 리버모륨)로 나열한것이다.[3] "주양자수"를 나타내며, 간단히 말하자면 '''전자를 채워넣을 수 있는 오비탈의 에너지 준위와 종류(=전자 껍질의 수)'''를 나타낸다. 예를 들면 1주기는 전자를 넣을 수 있는 오비탈의 종류가 단 1개(1s)이고, 3주기는 전자를 넣을수 있는 오비탈의 종류가 3종류(3s,3p,3d)다(사실, 3주기에선 원래 3s,3p만 집어넣는 경우가 많지만, 3d에 최외곽 전자를 집어넣는 경우도 간혹 보인다-DNA뼈대에서의 인산결합이 그 예[4] 다만 위의 주기율표에서는 수소의 위치가 1족으로 되어 있지만 그 이중적인 화학적 특성 때문에 누가 만드느냐에 따라 1족 혹은 17족, 경우에 따라 두 곳 모두에 위치하는 경우도 있다. 또한 간혹 오비탈이 절반 비어있다는 이유로 탄소 위에 놓는 경우도 있다.[5] 연구 결과에 따르면 아스타틴은 준금속으로 보기에는 금속성이 강하다고 한다.[6] 금속성, 반도체 성질, 높은 화학 반응성, 상온에서 고체로 존재 등.[7] 수상자는 플루오린의 분리에 성공한 무아상. 사실 플루오린은 그 무지막지한 반응성 때문에 순수한 형태로 분리하는 게 지극히 어려우니, 무아상의 공로도 적지 않다.[8] 그래선지 대부분의 화학2 교과서에선 주기율표를 설명할 때 원소 카드를 갖고 카드 놀이를 하는 활동을 시킨다.[9] 황화 암모늄.[10] 주기율표의 순서는 양성자 개수의 순서[11] 일단 7주기와 란타넘족은 이름이 어렵다. 악티늄족도 어려운 편이지만 우라늄이나 플루토늄처럼 잘 알려진 원소들도 있고, 공식 명칭을 지을 때 아인슈타이늄이나 멘델레븀처럼 사람의 이름을 따거나, 캘리포늄처럼 지역의 명칭을 따는 등 과학자나 지역 명칭으로 이름을 지은 경우가 많아서 7주기 원소나 란타넘족 보다는 외우기가 비교적 쉬운 편이다.[12] 플레로븀 원자를 금 표면에 흡착시키는 실험 결과 -60℃의 끓는점을 가질 것으로 추정되었다.[13] 현재 네이버캐스트는 네이버 지식백과로 통합됐다.